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ABSTRACT: To effectively manage coastal flood risk it is necessary to be able to quantify it. This 
quantification can however, be a challenging undertaking. Coastal flooding risk is defined as the 
probability of flooding multiplied by the consequences. However, both the probability of flooding and the 
consequences can vary significantly over broad spatial and temporal scales. The probability component 
of coastal flood risk it is usually calculated by the application of multivariate extreme value models that 
extrapolate the joint probability density of the historical data, normally defined by the offshore sea 
condition (wave height, wave period, wave direction, wind intensity and direction, astronomical tide, storm 
surge level, mean sea level), to extreme values. Executing the corresponding hydrodynamic and 
inundation models for the full set of stochastically generated events is often not viable in computational 
terms. In the study described here, a computationally efficient, and hence practical, coastal flood risk 
analysis modelling system has been developed. The system applies the multivariate extreme value model 
of Heffernan and Tawn (2004) to high resolution offshore sea condition data (Camus et al, 2013). The 
resulting monte-carlo simulation data are then transferred inshore using a meta-modelling approach 
based on data mining techniques and non-linear interpolation functions (Camus et al 2011). These 
transformed nearshore data then form the boundary conditions of a reduced complexity (and hence 
computationally efficient) flood inundation model (RFSM-EDA).The modelling system has been applied to 
an urban coastal area located at Northern Spain mainly affected by wave-induced overtopping events. 
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1. INTRODUCTION  

Coastal flood risk may be quantified by the probabilities of flood events and their potential consequences 
(Samuels et al., 2005) and is usually expressed in monetary terms (e.g. €/year). Historical records of 
extreme values of the ocean variables responsible of flooding are limited therefore some statistical 
methods have been developed to infer the probability distribution of inundation events from the storm 
statistics, such as the Joint Probability Method (JPM).These inundation events (offshore sea conditions) 
must be transferred to consequences following the commonly adopted source-pathway-receptor-
consequences model. The main objective of this article is to develop a new methodology to assess the 
full distribution of flood risk using a highly efficient 2D flood model and applying empirically-based depth-
damage functions to estimate the statistical distribution and spatial extent of damage.  

2. METHODOLOGY 

In common with other natural hazard analysis, flood risk (R) is typically defined as a function of probability 
and consequence (Z) and expressed in terms of Expected Annual Damage (EAD), USACE (1996).  In the 
context here, the probability component comprises consideration of multiple sea condition variables and 
hence can be written as: 
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where  X is a vector comprising the sea condition variables and fx(X) is the joint probability density of the 
sea-conditions. The consequences of flooding are a function, g, of the sea conditions. The natural starting 
point for the analysis is offshore sea conditions in deep water away from the nearshore region where 
waves undergo complex transformation processes, (Bruun and Tawn, 1998). The joint probability density 
of offshore sea conditions is extrapolated to extreme values using the method of Heffernan and Tawn 
(2004). This analysis provides a stochastically generated set of peak values of sea-conditions, which 
includes extremes and preserves the dependence characteristics of the original data.  This set of events 
is transformed to nearshore using a meta-model constructed using the SWAN (Booij et al., 1999) wave 
transformation model. These nearshore peak sea-condition events are then used to calculate overtopping 
rates based on a pre-run library of IH2VOF (Torres-Freyermouth et al., 2007) cases under different profile 
typologies. The corresponding overtopping rates form the boundary conditions for flood inundation 
simulations, which are undertaken with a computationally efficient flood inundation model, RFSM EDA, 
(Jamieson et al., 2012a). The resulting outputs are aggregated to determine risk. The different steps of 
the modelling system are summarized in Figure 1 and described in detail throughout the specific case 
study. 

 

Figure 1: Methodology Flow Chart 
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3. CASE STUDY 

The location chosen for the case study site is Sardinero Beach at the coastal town of Santander on the 
Cantabria Coast in northern Spain. This coastal area is sporadically affected by large swells generated in 
the North Atlantic basin (significant wave height up to 10m, storm surge level up to 2m and spring tide up 
to 5m) producing important wave-induced overtopping events. Sardinero is an urban sandy beach very 
popular due to the recreation amenities throughout the year for both residential and tourism purposes. 
The beach and the city are separated by a promenade at different heights  along it (Figure 2). The studied 
urban area is mostly residential with spacious recreational zones. It is one of the most noted parts of the 
city.  

 

Figure 2: Map of the study location, nearshore points (clear blue), IH2VOF profiles and RFSM-EDA 
computational mesh (yellow).  

3.1 Data   

The global wave hindcast GOW, (Reguero et al., 2012), has been used as the primary source of wave 
data for this study. This reanalysis data set uses the Wave Watch III numerical model forced by 6-hourly 
wind fields from the atmosphere model NCEP/NCAR. The reanalysis GOW spans from 1948-2013 with 
hourly resolution. These data have been further downscaled to regional scale to obtain a Downscaled 
Ocean Waves (DOW) database, (Camus et al., 2013). The DOW data comprise hourly data for the period 
1948-2013 with spatial resolution of ~200 m along the Spanish coast. These data have been calibrated 
using instrumental records (Mínguez et al,. 2011). 

Sea level data (astronomical and surge residuals) in the form of hourly time series from two different tide 
gauges, the Spanish Institution of Oceanography (1940-2005) (IEO) and from Puertos del Estado (1995-
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present), were used in the analysis. Where there were gaps in the time series, these were filled using a 
regional storm surge reanalysis of southern Europe, GOS (Cid et al., 2013). 

The topographic data is obtained from a national topographic map 1:25000 (MTN25) from the National 
Geographic Institute, resampled to a 5 meters horizontal resolution DTM. The bathymetry used is defined 
by means of the global bathymetry “General Bathymetric Chart of the Oceans” (GEBCO), with a spatial 
resolution of 1′ from a combination of sounding waves and satellite data, available at the British 
Oceanographic Data Centre (BDOC), and the Spanish coastal charts, providing a detailed representation 
of the shallow water areas. 

3.2 Multivariate Extreme Value Method 

A joint probability method, that has as its basis the approach of Heffernandand Tawn (2004), is adopted 
to obtain the large sample of offshore multivariate extreme dataset necessary to characterized risk. The 
methodology is described in detail in Gouldby et al. (2014) and is summarized briefly here.  

The offshore variables considered on the case study site comprised waves (height (Hs), mean period (Tm) 
and direction (θHs)), winds (speed (U) and direction (θU)), sea level (surge (S) and astronomical 
component (A)) that can combine to induce flooding. 

The problem then is to determine the probability of exceeding specified levels of a flood consequence 
related variable of interest.  This could be the number of injuries or fatalities, for example, or alternatively 
economic damage. Often intermediate variables such as depth or velocity of flooding are required for 
mapping purposes.  In this case study water depth in the floodplain is the variable of interest and is 
denoted as Z, hence the requirement is to establish: 
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Whilst there are alternatives, there are significant benefits in employing joint probability methods (JPM), 
(Bruun and Tawn (1998), Hawkes et al. (2002) and Gouldby et al. (2014)).  These JPM methods require 
extrapolation of the joint density of X
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The JPM approach is adopted  here and the extrapolation of the joint probability density is undertaken 
using the method of Heffernan and Tawn (2004). This evolves by first specifying semi-parametric 
marginal distributions, with the extremes defined by Generalised Pareto Distributions (GPD´s) which are 
transformed onto Gumbel scales.  If Y–i denotes the vector of all transformed variables Yj excluding Yi, the 
method is typically applied using the multivariate non-linear regression model 

Y–i | Yi = a Yi + Yi
b
 W for Yi > v,      [4] 

where a and b are vectors of the parameters from the fitted pair-wise regression model, v is a specified 
threshold and W is a vector of the regression residuals. The residuals are assumed to be normally 
distributed  with a mean and standard deviation to be found and maximum likelihood is generally used to 
obtain the parameter estimates. Once fitted, a Monte Carlo simulation procedure is used whereby 
samples from the residuals are used to generate realisations of Y. These are then transformed back to 
the original scales.  The result is a large (in this case approximately 314.000 realisations, representative 
of 10.000 years) set of offshore sea condition events. 
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3.3 Nearshore Data 

To proceed with the analysis, it is necessary to transform the stochastically generated set of offshore 
conditions through to the nearshore. Transformation of the large set of offshore sea conditions may often 
not be practical due to computational resource constraints. To overcome this constraint, a meta-model of 
SWAN has been developed. Whilst there are a wide variety of meta-modelling methods, Camus et al. 
(2011), has used Radial Basis Functions (RBF´s) to replicate the SWAN wave model and hence that 
approach is chosen here. The RBF has the following form:   
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Here, Y
N
 is the vector of the near-shore sea conditions (ie the output of the meta-model) and: 

o

nn

oo XbXbXbbp  ......)( 22110

o
X

     [6] 

b0,1,2..n are coefficients to be found by fitting the RBF to the known points and Φ is a Gaussian function 
defined as: 
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where c is a shape parameter D is a vector comprising the m “known” near-shore wave conditions derived 
from the SWAN model design point simulations.  

Once fitted, the RBF´s are used in place of the SWAN model to transfer the offshore data a series of 
nearshore locations (Figure 2). The number of design points (m) used to construct the meta-model was 
m=500. The MDA was run to define these design points.  These points are shown, together with the 
simulated and historical data, in Figure 3.   

 

 Figure 3: Simulated offshore data and design points output from the MDA algorithm. 
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3.4 Overtopping Rates 

Overtopping rates were numerically modeled with IH2VOF model (www.ih2vof.ihcantabria.com). IH2VOF 
is one of the most advanced RANS models due to its capabilities, robustness and extensive validation for 
both surf zone hydrodynamics (Torres-Freyermuth et al., 2007) and the stability and functionality of 
conventional or non-conventional coastal structures. This model solves the two-dimensional wave-flow for 
hybrid domains in a coupled NS-type equation system, at the clear-fluid region (outside the porous 
media) and inside the porous media by the resolution of the Volume-Averaged Reynolds Averaged 
Navier-Stokes (VARANS) equations. Turbulence is modelled using a k-ε model for both the clear-fluid 
region and the porous media region. Realistic wave generation, second order generation and active wave 
absorption are some of the unique features included in the model. 

As a RANS-VOF model  is highly computationally expensive, data-mining techniques (Camus et al. 
2011), were used to define a subset of sea states that were then used as input to RANS-VOF model.  
The output results were used  to define a catalogue of results that were used within the stochastic 
analysis. The selection was made taking into consideration the sea level (astronomical tide and storm 
surge) and the wave parameter(H0L0)^0.5  (H0 is the significant wave height and L0 is the peak period 
deep-water wave length). 

Figure 4 shows the historical time series reconstruction of the offshore point (X0), a local point (Y6) and 
the associated hourly averaged overtopping rates (Q6) in section number "6". 

 

Figure 4: Historical Time Series Reconstruction from offshore data to overtopping rates (top to bottom). 
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To proceed with the analysis it is necessary to define the hydraulic boundary conditions input to the 
inundation model, namely the associated hydrograph Q

n
 (t) for each of the stochastically simulated peak 

events. For practical purposes, the design hydrographs have been kept simple while synthesizing and 
preserving some physical properties (such as peak discharge Q, volume V, duration D, and hydrograph 
shape) (Serinaldi, et al., 2011). In this study, a triangular hydrograph shape has been assumed   
dependent on these three parameters s. The physical properties of each simulated hydrograph are based 
on historical information where the events chosen are those with an overtopping rate representative of 
flooding (>0.1m

3
/s). The historical data used is selected with the standard peaks-over-threshold approach  

and the corresponding duration, and total volume of each event has been calculated. 

With these examples of observed hydrographs a relationship has been established between peak 
overtopping rate and its corresponding duration (Figure 5). Using this relationship a synthetic hydrograph 
for each stochastically simulated sea-state, can be defined and used as input for the inundation model.   

 

 Figure 5: Example of a Duration Fit  (section 6) (left) and Synthetic Hydrograph scheme (right).  

3.5 Flooding Model 

There are a wide variety of numerical models available for simulating flood events. These range in 
complexity from simplified sea level projection methods, to volume spreading methods ( Gouldby et al., 
2008a) diffusion wave methods  (Bates and De Roo, 2000) and models that solve the full shallow water 
equations (Lhomme et al. 2010), for example. The simplified models have been widely applied in 
probabilistic analyses due to their computational efficiency.  This efficiency is however, often obtained at 
the expense of accuracy of the predicted flooding scenario. More recently, new hybrid diffusion wave/full 
SWE models have emerged, (Bates et al., 2010). In this approach, a local acceleration term is included 
with only the advection term of the full shallow water equations excluded. This additional term enables 
stable solutions at much larger time steps, thereby significantly increasing computational efficiency when 
compared to standard diffusion wave models. High resolution (1-2m horizontal) LIDAR data is 
increasingly being used for flood inundation simulations.  Running numerical models at this resolution 
can, depending on the size of the study area and model formulation, be exceptionally computationally 
demanding. To make use of this detailed information, whilst still achieving practical simulation times, a 
new model has been developed. This model, RFSM EDA, (Jamieson et al., 2012a) stems from earlier 
modelling systems used for national and regional flood risk analysis in England and Wales, (Gouldby et 
al. 2008a).    

The RFSM-EDA model operates on a topographically based mesh enabling model simulations to be 
undertaken at coarse resolution, offering significant increases in computational efficiency when compared 
with traditional (flat cell) models (Jamieson et al., 2012). This meshing system requires the analysis of the 
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floodplain topography using a pre-processing algorithm to develop an irregular mesh of so-called Impact 
Zones (Figure 2). The resolution of the Impact Zones mesh is not dependant on the DTM resolution as 
the user can control the minimum and maximum size of the Impact Zones. Therefore a fine resolution 
DTM can be used to produce the mesh of Impact Zones with no impact on the number of Impact Zones 
(and the model runtime). The flow calculations that are performed on the coarse mesh are defined using 
the set of equations proposed by Bates et al. (2010). This offers further computational efficiencies over 
diffusion wave models that use the same meshing system, (Falter et al., 2012), due to the increased time 
steps that are possible.   

The topographically based nature of the mesh requires a slightly different approach than that applied by 
Bates et al. (2010). The flow across each cell interface, Qf, is given by 
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Where Qf is the interface flow, t is time, Af is interface area, Rf is hydraulic radius of the interface, n is 
Manning’s coefficient and Sf is the water surface slope across the interface.  Conservation of mass is 
ensured through the implementation of Eqn. 9. 
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where Vi is the volume in Impact Zone i, and j is a neighboring cell. The volume within each Impact Zone 
(Vi) is a function of the water level.  These relationships are defined in advance during a pre-processing 
stage, enabling efficient computation during the simulation. The equations are solved using an adaptive 
time-step. Numerical stability is ensured through  implementation of a CFL criterion developed by Guinot 
and Soares-Frazão (2006). Overall the RFSM EDA results have proved to be closely comparable to those 
from full SWE models  (Environment Agency 2013, Jamieson et al., 2012). 

Due to the fast simulation run times, less than 10 seconds on a standard desktop computer for the study 
area, it is possible to simulate a large number of events, those from the simulated dataset that are 
representative of flooding (overtopping rate higher than 0.1 m

3
/s in any of the defined sections). The 

number of RFSM-EDA realizations are 69926. Figure 6 shows an example of the simulations performed 
associated with  an extreme  event that recently occurred. On the right hand side, a picture taken on 
March, 1st, 2014 reveals a dramatic storm event that recently affected  the study area. 

 

Figure 6 : (Left) Inundation extent and reached water depth (test 20587).(Right) Picture taken on March 
1st, 2014 during an exceptional event. 
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3.6 Damage Model 

The last step is to calculate the flood damage for every scenario simulated. Although, in the literature a 
broad set of flood functions can be found, some general properties can describe the differences: 
(1)functions may express damage as marginal function or as integral function: in the first case additional 
damage is calculated for each increase in depth and in the second as total damage due to each water 
level. The different approaches have different purposes, the first one is used to determine the optimum 
level of any flood protection measure, and the second is used to determine total damage from each 
hazard level; (2)Thresholds: Damages may exist only when the hazard overpasses a certain threshold. If 
this is the case, there is a minimum value for hazard required for damage to exist; 

(3)Convexity/Concavity: If for all depths h>k, 0
2

2
;0 









h

D

h

D  meaning that total damage is increasing but at a 

decreasing rate there is convexity. However, concavity exists at a level that once has been reach 
produces the maximum damage (collapse of the system) and no additional increase in hazard level would 
produce additional damage.;(4) Local versus global effects. There may be damages directly related to the 
flood location or conversely the impact of the flooding may reach areas distant from the flooded area 
through the services produced in a social or economic network. In our case, we have identified an 
electrical facility (land use 9) that provides services to a broad area that may suffer indirect damages if 
the facility is disconnected from the network. This fact exemplifies the issue that direct damages are 
directly observed in the field but indirect damages may travel to non flooded areas. 

To be able to calculate the expected damage the asset value and the damage functions have to be 
assigned to the different land-use units. Different databases can be consulted  such as the Multi Coloured 
Manual (UK) (Penning-Rowsell et al. 2003) , HAZUSMH multi-hazard software (United 
States)(Fema,2009) or the JRC Model (European Commission/HKV)(Huizinga, 2007) where more 
general damage functions are defined, however in this study we have opted for a specific definition of the 
damage functions based on local data and expert judgment, which is recommended for micro-studies  to 
reduce uncertainties (Buck 2004). In the case study nine different land uses have been defined (figure 7). 
Based on the properties from table of figure 7, a Beta CDF-type damage curve has been assigned to 
each land use. Therefore, the estimated damage  can be described as follow:   

Damageunit i =AssetValuei*CDF((x-xmini)/(xmaxi-xmini))                                                       [10] 

where the cumulative distribution function CDF is defined by a Beta distribution family of Beta(2,2), xmin is 
the threshold where damage starts and xmax, the water depth at which damage stops to increase.

 

Figure 7: Land Uses Units. 

To calculate the total damage of each stochastic realisation the damage of each cell within the flood plain 
must be summed up.  
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The last step to calculate flood risk or the expected annual damage (EAD) is the integration of the total  
risk over the 10000 simulated years.  EAD = ΣDk/years; where k account for each of the simulated events. 
In our example, the EAD for Sardinero beach is 0.8M€. With the large set of simulated events it is 
possible to obtain different statistical outputs such as the inundation map and spatial expected damage 
for a certain return period. As an example in figure 8, the 100 year return period event related to the water 
depth in the floodplain and its corresponding damage are presented.   

 

 

Figure 8: 100 year return period flood depth in the floodplain (top) and its associated damage 
(bottom).Spatial units are 5x5=25m

2
. 
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4. CONCLUSIONS 

A computationally efficient, yet robust coastal flooding risk model has been described. For simplicity, the 
methodology has been applied to an small urban area in northern Spain, but one of its advantages is that 
it could be extended to larger spatial scales since the extreme value method is applied in deep water and 
the processes that the waves experience in their travel to coast such as shoaling, refraction..etc are 
modeled with hydrodynamic and surf zone models in a computationally efficient manner with the use of 
metamodels and a pre-executed library respectively. The use of a validated simplified inundation model to 
compute the inundation extents and water depth allows to simulate the large sample of extreme 
independent cases preserving the key hydraulic principles of mass conservation and flow connectivity, 
allowing  the determination of the statistical distribution of damage and its spatial distribution. 

Future work in this area is needed to incorporate different aspects such as an efficient defence reliability 
analysis, which would improve the current methodology, and the identification and quantification of the 
uncertainties associated with every particular component.  
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