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ABSTRACT

Drinking water networks (DWN) across the world undergo priming following repair procedures or when these
are commissioned. In this process, water that is admitted through a valve will displace air, which will be
ventilated at locations that have contact with the atmosphere. As it escapes, air phase pressurizes within
distribution networks, creating a very complex two-phase flow regime as water main reaches are pressurized.
There is no available methodology to provide an estimate of how much air phase pressurizes in the earlier
stages of DWN priming, consisting thus in a clear knowledge gap. We propose a simple methodology applying
the widely used EPANET tool to compute the velocity and air phase pressurization through modifications to
the emitter coefficient used in that model. This approach is demonstrated through a sample network in which
a steady water inflow is admitted as air escapes through multiple hydrants, with EPANET computing air flow
velocity and pressure. Future work aims to add the ability to consider air pressurization in other system-wide
water modeling tools.
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1. Introduction and Objectives

Filling or priming Drinking Water Networks (DWN) is crucial for their operation, especially after repairs, a
necessity that is becoming more frequent due to aging infrastructure across the globe. When water re-enters
the system, it displaces air, which escapes through ventilation points. The rate of water inflow and the available
ventilation can cause the air to pressurize, affecting system dynamics and complicating hydraulic models. In
addition to priming operations, air-water interactions are also noticed in Intermittent Water Supply (IWS)
systems, which undergo periodic filling and emptying. These systems, prevalent globally, often face challenges
like air pocket formation at high points in the network. These air pockets can interact with water flows, leading
to pressure surges that compromise pipe integrity, cause uneven water distribution, and degrade water quality.

Rapid filling of water pipes have been studied in the context of unsteady flows for many decades. Pioneer
research from Martin (1976) investigated rapid filling and air compression, liking the advance of a pressurized
water front against an air pocket to a spring-mass problem. Hamam and McCorquodale (1982) and Li and
McCorquodale (1999) studied air pocket entrapment driven by shear flow instabilities, linking them to water
hammer events. Other related contributions linked to this type of flows include Zhou et al. (2002), Vasconcelos
and Leite (2011), among others.

Stormwater systems, while designed to operate by gravity, also experience rapid filling conditions and
occasional pressurization. Various contributions have explored the mechanisms of flow regime transition and
air pocket entrapment, such as VVasconcelos and Wright (2006) and Chosie et al. (2014). Because stormwater
systems may experience free surface and pressurized flow conditions simultaneously in different locations,
numerical models such as EPA SWMM (Rossman 2017) have the ability of computing flows considering
mixed flow conditions. However, most tools do not consider the dynamics of air-water compression, limiting



its applicability of representing rapid filling conditions in poorly ventilated systems (Trindade and VVasconcelos
2013).

Researchers have been using stormwater modeling tools and methodologies, such as SWMM, to represent the
process of DWN undergoing priming or operating intermittently. VVasconcelos et al. (2022) highlighted the
potential of EPA-SWMM by applying the model to represent the cycle of an intermittent dendritic network in
Guatemala. Gullotta and Campisano (2024) and Abdelazeem and Meyer (2023) also applied the EPA-SWMM
model to simulate the full cycle of intermittent networks, while collecting field observations on filling,
distribution, and emptying. Sarisen et al. (2024) developed an improved EPA-SWMM model for IWS
networks, incorporating a genetic algorithm to calibrate minor losses and roughness coefficients. Yet, SWMM
has no ability to incorporate air pressure in its calculations. Ferreira et al. (2022, 2023) recently improved the
Storm Water Management Model (SWMM) to simulate air pressure variations during rapid pipe filling, but
these studies did not consider air ventilation.

Another challenge is the complexity of DWN, with multiple branches, loops, and the time-varying nature of
inflows during rapid filling, as pointed by Liou and Hunt (1996). Geller et al. (2025) presented an investigation
in which water filling occurred in a scale model of a distribution network, and proposed a modification of the
widely-used EPANET model to compute time-varying air phase pressures through a sequence of snapshot
simulations. This work also proposed a modification of EPANET emitters to enable the representation of air
valves. While an important initial step, the methodology was not tested with other, larger geometries that would
be expected in real DWN. This work aims to demonstrate the application of EPANET in such conditions,
considering the initial stages of the filling when most of the conduits are empty. The overall goal is to determine
how EPANET predictions of pressure and air phase velocity are affected by water inflows and availability of
ventilation.

2. Methodology

EPANET (Rossman et al. 2020) is a widely used hydraulic model to represent flows in DWN through the
solution of mass balance at junctions and the energy equation at pipe reaches, assuming steady flow conditions.
Unsteady flows are not explicitly modeled, though time-varying conditions can be represented through the
solution of a series of steady state scenarios. In order to adapt EPANET to compute the distribution of air phase
pressures during priming, the first step is to redefine how emitters, which are a node property in EPANET to
represent flow through a nozzle or orifice to the atmosphere, are supposed to operate. Typically, model users
calibrate an emitter coefficient to represent such flows:
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where C,,, [L*°/T] is the emitter discharge coefficient for water, C, is the orifice discharge coefficient, 4, is
the orifice area, g is the gravity acceleration and H,, is the head, expressed in units of meters of water column
at the emitter node. If the emitter exponent is assumed as 0.5, it essentially behaves like a typical orifice:
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where p is the fluid’s pressure, and p, is the specific mass of air. EPANET allows for the selection of an
arbitrary specific gravity and relative viscosity for the fluid being studied. Yet, for the computation of flows
through emitters, EPANET expresses the pressure head in units of meters of water column. Thus, if the air
discharge behaves similarly to an orifice, the model can relate air discharge to water pressure head through the
adjustment presented in equation 4, which represents the air escaping through a node due to the pressure in the
location by calibrating the emitter coefficient at the node, as follows:
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In addition, to perform these calculations using EPANET, the model needs to be set to pressure-driven analysis
(PDA) instead of the demand-driven analysis that is default in EPANET. Figure 1 presents a typical flowchart
of using EPANET for the computation of air flows in DWN.
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Fig. 1. Steps to apply EPANET to compute air flows in DWN during priming events.

3. Results

An example of the application of the methodology is presented in Figure 2, based on the NET1 input file that
is installed with EPANET. Varying water inflows were admitted in the system at the location where the pump
is placed, and these were represented through a fixed value of a negative demand (i.e., steady injection of
water). Further, it is assumed that air is incompressible, so the water inflow will be balanced by air outflow
rates. Figure 2a indicate the locations where 115-mm hydrants (with a 5% opening area) are placed. No other
ventilation is available. The resulting emitter coefficient for each of these junctions is computed as:
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A priming inflow rate of 111 L/s is considered here and admitted through node 10. The simulation is intended
to represent only the initial stages of the priming process, prior to water reach the first junction (n11). This is
necessary given that at this point it is possible that complex air-water features, such as pocket formation and
multiple pressurization interfaces. As expected, the flow velocity distribution is not trivial and was affected by
the water main diameters. Interestingly, given the low viscosity of air, head losses for the air phase due to
friction were small and by consequence the variation of pressure heads (expressed in m H20) did not exceed
0.06 m. Thus, at least for the early stages of priming following the establishment of air flows, it is reasonable
to assume uniformity of air phase pressure escaping through various ventilation points.
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Fig. 2. Computed values for air flow velocity and pressure using EPANET with modified emitters for a priming rate of 111 L/s.

Alternatively, air phase pressures can be much higher if a larger priming inflow is used (221 L/s) and a much
smaller available ventilation is considered. Figure 3 presents such a scenario, when only node n23 is open to
the atmosphere (with a 12.5% opening), indicating pressures 10x larger than the results shown in Figure 2.
While it is unlikely that such pressures would create structural impacts to the conduits, it is possible that air
release would be characterized by strong noise.
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Fig. 3. Computed values for air flow velocity and pressure using EPANET with modified emitters for a priming rate of 221 L/s and a single
ventilation point.

4. Final Remarks

This work demonstrated a new application of EPANET to provide estimates of air phase pressurization during
early stages of priming. This is possibly one of the most complicated two-phase flow conditions in urban water
systems, and this work is viewed as an initial step toward a better understanding of such operations. The
formation of air pockets, air-water surging, multiple pressurization interfaces, and the variation of water
inflows are all complicating factors expected to occur in real applications, but still not addressed by current
research. The transients anticipated as the air pocket collapses at ventilations are also not yet considered,
though these may be very intense and potentially damaging. More research is ongoing on this topic.
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