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ABSTRACT 

High-rise building water distribution systems (WDS) present significant leak diagnostic challenges due to 
complex transient flow behaviours (e.g., unpredictable flow and demand (randomness and density - number of 
branches/consumption nodes), transient waves interactions) and scarce real-world leak data. To address 
limitations of conventional methods and enable continuous monitoring without supply interruption, this study 
proposes a physics-informed hybrid learning framework for leak detection, localization, and quantification. 
Our core innovation integrates convolutional neural networks (CNNs) with physics constraints derived from 
transient flow governing equations, fusing hydraulic mechanisms with multi-sensor data. This physics-
constrained deep learning architecture leverages numerical simulations for data augmentation and is being 
validated using experimental data from a living lab at HKUST. The framework aims to advance transient flow-
based diagnostics by significantly reducing data dependency and improving accuracy for small leaks in multi-
floor systems, supporting proactive maintenance, water conservation, and sustainable urban water management 
through quantified environmental benefits. 
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1. Introduction 

1.1. Problem Statement High-rise buildings feature vertically segmented water distribution systems (WDS) 
with variable pressure zones (e.g., low/mid/high) and dynamic demand, leading to intricate transient flows 
(e.g., water hammer from valve closures, pump startup transients). These complex systems suffer substantial 
resource loss, with undetected leaks causing approximately 40 annual leaks at institutions like HKUST (Hong 
Kong University of Science and Technology, 2022) and compromising structural integrity through mold 
growth and material degradation (e.g., mold from hidden leaks) (World Health Organization, 2011). Existing 
leak detection methods face critical limitations: (1) Requirement for disruptive system shutdown during 
inspection, preventing continuous monitoring; (2) Hard to reliably detect low-magnitude pressure fluctuations 
caused by small leaks amid operational noise during normal water usage; and (3) High false alarms triggered 
by routine consumptionnormal usage patterns. Furthermore, pure physics-based models (e.g., method of 
characteristics for transient analysis) struggle with real-world complexities like environment noise, unknown 
demand and uncertainties, while data-driven models (e.g., CNNs) require large labeled datasets—scarce in 
buildings due to the impracticality of controlled leak tests in occupied buildings. 

1.2. Research GapWhile transient signal-based leak detection in municipal WDS is well-established, its 
adaptation to high-rise buildings remains underdeveloped. This gap stems from fundamental topological 
differences: high-rise WDS feature shorter pipe segments and denser network configurations—contrasting 
sharply with the long, predominantly horizontal pipelines in municipal systems. Our work bridges this gap by 
developing specialized methodologies validated through progressive complexity for enabling effective 
transient analysis in high-rise environments.1.3. ObjectiveDevelop a physics-informed hybrid learning 
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framework to: (1) Detect leaks using transient pressure/flow signals; (2) Localize leaks to specific floors/flats; 
(3) Quantify leak size (l/s); (4) Generalize to unseen high-rise buildings with minimal data. 

2. Methodology 

2.1. Transient Flow Physics and Leak Signatures 

Leak-induced transient features were identified via fundamental hydraulic analysis: 

• Pressure waves: A leak creates an impedance discontinuity generating partial wave reflections. The 
reflection coefficient 𝑅𝑅 follows:  

𝑅𝑅 =
𝑍𝑍pipe

𝑍𝑍pipe + 2𝑍𝑍leak
. (1) 

• Wave propagation: Under the assumption of small pipe wall deformations and linear elasticity, the 
pressure wave speed in a fluid-filled pipe is governed by:  

𝑎𝑎 = �
𝐾𝐾
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. (2) 

Where 𝑍𝑍pipe = 𝜌𝜌𝜌𝜌 𝐴𝐴⁄ =pipeline characteristic impedance, 𝑍𝑍leak = 𝐻𝐻leak 𝑄𝑄leak⁄  = leak impedance, 𝜌𝜌 = 
fluid density, 𝑎𝑎 = pressure wave speed, 𝐴𝐴 = pipe cross-sectional area, 𝐻𝐻leak = pressure head at leak 
location, 𝑄𝑄leak = volumetric leak flow rate, 𝐾𝐾 = fluid bulk modulus, 𝐸𝐸 = Young's modules of pipe 
material,  𝐷𝐷  = pipe diameter, e = pipe wall thickness, 𝜑𝜑  = dimensionless pipe anchoring factor 
(accounting for axial/radial constraints). Wave speed 𝑎𝑎 decreases with pipe aging (e.g., due to material 
degradation (reducing the effective stifness 𝐸𝐸𝐸𝐸) and constraint variations (changing 𝜑𝜑)). 

Key governing equations embedded as physics constraints: 

• Continuity equation for transient flow:  
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• Momentum equation: 
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Where 𝐻𝐻 = hydraulic head (pressure-related measure), 𝑡𝑡 = time, 𝑄𝑄 = volumetric flow rate, 𝑥𝑥 = spatial 
coordinate along the pipeline, 𝑔𝑔 = gravity, 𝐴𝐴 = pipe cross-sectional area,  𝑓𝑓 = friction factor, 𝐷𝐷 = pipe 
diameter. 

2.2. Hybrid Learning Framework 

The model architecture (Table 1) includes three modules: 
Table 1. Model architecture 

Module Components Physics Integration 

Physics-Embedded Feature 
Extractor 

CNN layers with wavelet 
initialization 

Kernels initialized using transient wavelet coefficients 
derived from Eq. 1-4 

Data Fusion Module Multi-sensor attention mechanism Prioritizes 100-300 Hz features from turbulent leak flow 
Predictive Head Multi-task output layers Physics-constrained loss function 

1. Physics-Embedded Feature Extractor: A CNN layer where convolution kernels are initialized using 
transient wavelet coefficients (capturing pressure wave patterns from Eq. 1-4), reducing reliance on labeled 
data. 

2. Data Fusion Module: Fuses transient pressure (sampled at 1 kHz) and vibration signals from sensors 
installed at floor junctions, with attention weights prioritizing features aligned with leak signatures. 

3. Predictive Head: Outputs leak probability, location (floor/flat), and size, with loss function penalizing 
violations of Eq. 1-4. The composite loss function incorporates both data-driven and physics-based terms: 

𝐿𝐿total = 𝐿𝐿data + 𝐿𝐿physics. (5) 



Where 𝐿𝐿data =  lossStandard cross−entropy + lossMSE . This term combines standard classification and 
regression losses and ensures the model fits the training data well, capturing patterns in the observed data. 
𝐿𝐿physics = 𝜆𝜆1�𝑄𝑄leak − 𝑘𝑘√∆𝐻𝐻�+ 𝜆𝜆2�𝑅𝑅pred − 𝑅𝑅phys� enforces compliance with hydraulic principles through 
two constraints. 𝑄𝑄leak is predicted leak size. 𝑘𝑘 is a proportionality constant related to hydraulic properties. 
∆𝐻𝐻  is measured pressure drop. 𝑅𝑅pred  is a model-predicted wave reflection coefficient and 𝑅𝑅phys  is 
physically derived wave reflection coefficient (based on hydraulic theory). 𝜆𝜆1 and 𝜆𝜆2 is weighting factors. 
This physics-informed neural network (PINN) approach ensures predictions comply with fundamental 
hydraulic principles. 

2.3. Data Generation and Validation 

• Numerical dataset: Simulated Tower 4 (floors 5-8) with 220,000 leak scenarios; Parameters: Leak 
floor (5-8), leak flat (A-C), size (0.01-0.1 L/s).  

 
Fig. 1 Simulated pressure data variation at all measurement points: per flat model, leak of 0.5 l/s at flat 8C (35 meters from the flat 

measurement point), transient generated by valve opening and closing in the measurement location of flat 8A within 100 milliseconds. 
• Experimental dataset: HKUST Tower 4 monitoring system (2025); Distributed pressure sensors (1 

kHz) and accelerometers; Controlled leak tests at floor 6. 

• Training strategy: Physics-constrained pretraining on synthetic data; Transfer learning with 30% 
experimental data; Validation on 70% real-world measurements. 

3. Expected Contributions 

a. Continuous monitoring capability: First framework enabling leak detection without system shutdown 

b. Physics-embedded AI: Novel CNN architecture with hydraulic equation constraints 

c. Resource efficiency: Significant reduction in training data requirements anticipated via physics-guided 
learning 

d. Scalable solution: Transfer learning approach for rapid deployment in new buildings 
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