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ABSTRACT

High-rise building water distribution systems (WDS) present significant leak diagnostic challenges due to
complex transient flow behaviours (e.g., unpredictable flow and demand (randomness and density - number of
branches/consumption nodes), transient waves interactions) and scarce real-world leak data. To address
limitations of conventional methods and enable continuous monitoring without supply interruption, this study
proposes a physics-informed hybrid learning framework for leak detection, localization, and quantification.
Our core innovation integrates convolutional neural networks (CNNs) with physics constraints derived from
transient flow governing equations, fusing hydraulic mechanisms with multi-sensor data. This physics-
constrained deep learning architecture leverages numerical simulations for data augmentation and is being
validated using experimental data from a living lab at HKUST. The framework aims to advance transient flow-
based diagnostics by significantly reducing data dependency and improving accuracy for small leaks in multi-
floor systems, supporting proactive maintenance, water conservation, and sustainable urban water management
through quantified environmental benefits.
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1. Introduction

1.1. Problem Statement High-rise buildings feature vertically segmented water distribution systems (WDS)
with variable pressure zones (e.g., low/mid/high) and dynamic demand, leading to intricate transient flows
(e.g., water hammer from valve closures, pump startup transients). These complex systems suffer substantial
resource loss, with undetected leaks causing approximately 40 annual leaks at institutions like HKUST (Hong
Kong University of Science and Technology, 2022) and compromising structural integrity through mold
growth and material degradation (e.g., mold from hidden leaks) (World Health Organization, 2011). Existing
leak detection methods face critical limitations: (1) Requirement for disruptive system shutdown during
inspection, preventing continuous monitoring; (2) Hard to reliably detect low-magnitude pressure fluctuations
caused by small leaks amid operational noise during normal water usage; and (3) High false alarms triggered
by routine consumptionnormal usage patterns. Furthermore, pure physics-based models (e.g., method of
characteristics for transient analysis) struggle with real-world complexities like environment noise, unknown
demand and uncertainties, while data-driven models (e.g., CNNs) require large labeled datasets—scarce in
buildings due to the impracticality of controlled leak tests in occupied buildings.

1.2. Research GapWhile transient signal-based leak detection in municipal WDS is well-established, its
adaptation to high-rise buildings remains underdeveloped. This gap stems from fundamental topological
differences: high-rise WDS feature shorter pipe segments and denser network configurations—contrasting
sharply with the long, predominantly horizontal pipelines in municipal systems. Our work bridges this gap by
developing specialized methodologies validated through progressive complexity for enabling effective
transient analysis in high-rise environments./.3. ObjectiveDevelop a physics-informed hybrid learning
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framework to: (1) Detect leaks using transient pressure/flow signals; (2) Localize leaks to specific floors/flats;
(3) Quantify leak size (1/s); (4) Generalize to unseen high-rise buildings with minimal data.

2. Methodology

2.1. Transient Flow Physics and Leak Signatures

Leak-induced transient features were identified via fundamental hydraulic analysis:

e Pressure waves: A leak creates an impedance discontinuity generating partial wave reflections. The
reflection coefficient R follows:
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e Wave propagation: Under the assumption of small pipe wall deformations and linear elasticity, the
pressure wave speed in a fluid-filled pipe is governed by:
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Where Zyipe = pa/A =pipeline characteristic impedance, Zjeax = Hieak/Qleak = leak impedance, p =
fluid density, a = pressure wave speed, A = pipe cross-sectional area, Hje,x = pressure head at leak
location, Qe = volumetric leak flow rate, K = fluid bulk modulus, £ = Young's modules of pipe
material, D = pipe diameter, e = pipe wall thickness, ¢ = dimensionless pipe anchoring factor
(accounting for axial/radial constraints). Wave speed a decreases with pipe aging (e.g., due to material
degradation (reducing the effective stifness Ee) and constraint variations (changing ¢)).

Key governing equations embedded as physics constraints:

¢ Continuity equation for transient flow:
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e Momentum equation:
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Where H = hydraulic head (pressure-related measure), t = time, Q = volumetric flow rate, x = spatial
coordinate along the pipeline, g = gravity, A = pipe cross-sectional area, f = friction factor, D = pipe
diameter.

2.2. Hybrid Learning Framework

The model architecture (Table 1) includes three modules:

Table 1. Model architecture

Module Components Physics Integration

Physics-Embedded Feature
Extractor

CNN layers with wavelet
initialization

Kernels initialized using transient wavelet coefficients
derived from Eq. 1-4

Data Fusion Module

Multi-sensor attention mechanism

Prioritizes 100-300 Hz features from turbulent leak flow

Predictive Head

Multi-task output layers

Physics-constrained loss function

Physics-Embedded Feature Extractor: A CNN layer where convolution kernels are initialized using
transient wavelet coefficients (capturing pressure wave patterns from Eq. 1-4), reducing reliance on labeled
data.

Data Fusion Module: Fuses transient pressure (sampled at 1 kHz) and vibration signals from sensors
installed at floor junctions, with attention weights prioritizing features aligned with leak signatures.

Predictive Head: Outputs leak probability, location (floor/flat), and size, with loss function penalizing
violations of Eq. 1-4. The composite loss function incorporates both data-driven and physics-based terms:

Liotal = Lgata + Lphysics- (5)



Where Lgata = 10SSstandard cross—entropy + 10SSmsg - This term combines standard classification and
regression losses and ensures the model fits the training data well, capturing patterns in the observed data.
Lphysics = /11||Q1eak — kvAH || + 4, ”Rprecl — Rphys || enforces compliance with hydraulic principles through
two constraints. Qeax 1S predicted leak size. k is a proportionality constant related to hydraulic properties.
AH is measured pressure drop. Rpreq is a model-predicted wave reflection coefficient and Rppys is

physically derived wave reflection coefficient (based on hydraulic theory). 4, and A, is weighting factors.
This physics-informed neural network (PINN) approach ensures predictions comply with fundamental
hydraulic principles.

2.3. Data Generation and Validation

e Numerical dataset: Simulated Tower 4 (floors 5-8) with 220,000 leak scenarios; Parameters: Leak
floor (5-8), leak flat (A-C), size (0.01-0.1 L/s).

Pressure head variation (m)

Time (s)

Fig. 1 Simulated pressure data variation at all measurement points: per flat model, leak of 0.5 /s at flat 8C (35 meters from the flat
measurement point), transient generated by valve opening and closing in the measurement location of flat 8A within 100 milliseconds.

e Experimental dataset: HKUST Tower 4 monitoring system (2025); Distributed pressure sensors (1
kHz) and accelerometers; Controlled leak tests at floor 6.

e Training strategy: Physics-constrained pretraining on synthetic data; Transfer learning with 30%
experimental data; Validation on 70% real-world measurements.

3. Expected Contributions
a. Continuous monitoring capability: First framework enabling leak detection without system shutdown
b. Physics-embedded Al: Novel CNN architecture with hydraulic equation constraints

c. Resource efficiency: Significant reduction in training data requirements anticipated via physics-guided
learning
d. Scalable solution: Transfer learning approach for rapid deployment in new buildings
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