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UMIDADE DO SOLO NO CERRADQO: UM PANORAMA DOS FATORES DE
ESTADO E DOS PADROES DE ARMAZENAMENTO E REDISTRIBUICAO
VERTICAL DE AGUA EM ESCALA DE ZONAS CRITICAS
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Abstract: This study presents, through an analysis of the scientific literature, an overview aimed at understanding the
state factors, patterns and role of soil moisture in the vertical redistribution of water (evapotranspiration and recharge) in
the Critical Zone of the Cerrado biome. This is because, despite representing a small portion of the hydrological cycle,
soil moisture plays a crucial role in regulating ecohydrological processes, being a key factor in climate and hydrological
studies to identify mechanisms and processes that control the water-vegetation interactions in a scenario of intensification
of changes in land use and land cover.

Resumo: O presente estudo apresenta, por meio de analise da literatura cientifica, um panorama direcionado a
compreensdo dos fatores de estado, dos padroes e do papel da umidade do solo para a redistribui¢do vertical de agua
(evapotranspirag@o e recarga) na Zona Critica do bioma Cerrado. Isso porque, apesar de representar uma parcela reduzida
do ciclo hidrolégico, a umidade do solo apresenta papel crucial na regulagdo de processos ecohidrolégicos, sendo fator-
chave em estudos climaticos e hidrologicos identificar mecanismos e processos que controlam a interagdo agua —
vegetagdo em um cenario de intensificagdo nas mudangas de uso e cobertura do solo.

Palavras-Chave: Cerrado; Evapotranspiragdo; Recarga.

1. INTRODUCAO

Compreender o papel dos fatores ambientais na heterogeneidade espaco-temporal, avaliar os
impactos das mudangas na cobertura do solo e incorporar metodologias inovadoras para o
monitoramento da dgua na Zona Critica (CZ) figuram dentre as principais questdes ainda ndo
solucionadas pela hidrologia (Bloschl ef al., 2019). A CZ refere-se a porgao superficial da Terra, que
compreende desde o dossel da vegetacao até a base dos aquiferos livres (NRC, 2001; White, 2012).
Ao passo que ¢ considerada a principal camada de suporte a vida, estuda-la tem sido uma necessidade
a fim de obter conhecimento para a manuten¢do dos recursos naturais, especialmente a agua
(Parsekian et al., 2015).

Sabe-se que a CZ ¢ responsavel por armazenar uma parcela da agua que infiltra no solo e que
poderd atender tanto as demandas evaporativas quanto a recarga de aquiferos (Dandekar et al., 2018).
Logo, do conjunto de variaveis que determinam os fluxos de agua entre a CZ e a atmosfera e na CZ,
a umidade do solo (0) requer atencdo especial. Apesar de constituir uma fracdo reduzida do ciclo
hidrologico global (~ 0,05%), a 4gua armazenada na zona vadosa regula o particionamento da
precipitacdo entre os demais processos hidrologicos e influencia os balangos hidrico e energético
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terrestres (Farrar, Nicholson e Lare, 1994; Fu et al., 2022; Rodriguez-Iturbe et al., 2001; Tromp-van
Meerveld e McDonnell, 2006).

A caracteriza¢ao dos padroes de 0 e a identificagdo dos fatores ambientais — como o clima, a
topografia, a pedologia e o uso e cobertura do solo — que os condicionam sao conhecimentos basilares
nao s6 em estudos ecohidrologicos (Acharya, Halihan, ef al., 2017; Boughanmi et al., 2018; Fu et al.,
2022) e climatologicos (Jung et al., 2010; Schiermeier, 2008; Seneviratne et al., 2010), mas também
para aprimorar o manejo agricola (Mary et al., 2020; Michot ef al., 2003) e a anélise dos riscos de
deslizamento (Franco ¢ Bonuma, 2017).

Diante do exposto, o presente estudo concentrou-se em analisar os fatores de estado e os padrdes
de 0, com foco na analise da memoria e da persisténcia das condi¢des de armazenamento de agua no
solo, e a relagdo entre esses padrdes e a redistribui¢do vertical (evapotranspiragdo e recarga) de agua
na CZ, com énfase para o bioma Cerrado.

2. FUNDAMENTOS E FATORES DE ESTADO ASSOCIADOS AO ARMAZENAMENTO E
A DINAMICA DE UMIDADE DO SOLO

O termo umidade do solo (0) refere-se a agua presente em diferentes condigdes de
armazenamento na zona vadosa (camada do solo predominantemente nao saturada e de interface entre
a atmosfera e as formagdes geologicas subsequentes) (Figura 1). A parcela de 0 retida pelo potencial
matricial (), para satisfazer o déficit hidrico resultante das demandas do solo e da vegetacao, atribui-
se a denominagao capacidade de reten¢@o ou capacidade de agua disponivel (AWC, available water
content) (Veihmeyer e Hendrickson, 1950). Esta pode ser representada pela diferenca entre o teor de
0 na capacidade de campo (FC, field capacity) e no ponto de murcha (WP, wilting point) (Figura 1)
(Younger, 2007).
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Figura 1 - Diagrama simplificado com os principais estoques e fluxos relacionados a umidade do solo na zona
critica. Adaptado de Younger (2007).

Quando em estado superior a FC, a umidade pode atingir a saturagao (8s). Abaixo do WP, a
umidade ¢ dita residual () e encontra-se adsorvida ao solo, limitando a extracdo de 4dgua pelas
plantas (Veihmeyer ¢ Hendrickson, 1950). Desse modo, o conteudo de 0 disponivel para a vegetagao
(PAW, plant available water) é aproximadamente equivalente ao somatdério da AWC com o montante
de 0 contido entre a FC ¢ a g, isto ¢, excetuando-se a por¢ao de WP da umidade total do solo (SWC,
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soil water content) (Grayson et al., 1997). Em funcdo dos estados de armazenamento da 6 (6z, WP,
FC e 65) podem ocorrer trés cendrios de fluxo de agua no solo:

1. Umedecimento (até o fim do evento de precipitagdo, P): em caso de déficit hidrico no
solo (6 < FC), o potencial matricial mantém o volume infiltrado no sentido de incrementar o
armazenamento de umidade e restaurar FC (Grayson et al., 1997);

11. Redistribuicdo vertical ou lateral (no curto prazo apés a precipitacao):

- Na auséncia de déficit hidrico no solo (8 = F(C), a evapotranspiracdo (ET) real
(AET, actual evapotranspiration) sera suprida pela 8 a uma taxa maxima, igualando-se a
evapotranspiragao potencial (PET, potential evapotranspiration) (Grayson et al., 1997; Jipp et
al., 1998);

- Na auséncia de déficit hidrico no solo (8 = 65 > F(), a precipitagdo infiltrada serd
governada pela acdo da gravidade, permitindo a percolacdo em direcdo a zona saturada (Freeze e
Banner, 1970; Ward, 1984);

- Na auséncia de déficit hidrico no solo (8 = 65 > FC), a precipitacdo excedente sera
convertida em escoamento superficial (Qs) por excedéncia da capacidade de infiltracdo (Horton,
1933) ou em decorréncia da saturagdo do solo (Dunne e Black, 1970; Hewlett, 1961); e

1ii. Secagem (longo prazo apods a precipitacdo): caracterizada pelo retorno a condicao de
armazenamento semelhante aquele antecedente ao evento de precipitacdo (Grayson et al., 1997).

Desse modo, associado ao papel da radiagdo solar (que disponibiliza energia para a
evapotranspiragdo) e da gravidade (que atua na drenagem do solo), 8 consiste em uma variavel-chave
no controle do particionamento da dgua no ciclo hidrologico terrestre. Restringindo-se aos processos
de redistribuicao vertical de 4gua na CZ, é importante detalhar as possiveis interagdes entre 6, ET e
recarga de aquiferos.

Considerando como referéncia WP e um dado valor de umidade critica (8.,;;), Budyko (1961)
definiu trés regimes de retencdo de agua no solo (imido, seco e de transi¢do), que se relacionam aos
padrdes de ET (Figura 2). Nos regimes seco (8 < WP) e imido (6 > 6.,;;) a 0 ndo afeta ET, enquanto
no regime de transicao (WP < 6 < 0.,+) a 0 é um fator importante na eficiéncia de ET, representada
pela fragdo evaporativa (EF, Equacdo 1, Figura 2). EF pode ser derivada a partir das relagdes entre
LE: fluxo de calor latente; H: fluxo de calor sensivel; AET: evapotranspiragdo real; PET:
evapotranspiracao potencial; e P: precipitagao (Eq. 1).

LE AET  PET

EF = e T H = PET - P

1

Nesse ultimo cenario, a 0 exerce um controle central nas trocas de 4gua e de energia entre a
superficie e a atmosfera. Por consequéncia, o modelo de Budyko (1961) estabelece dois regimes
principais de ET: 1) um controlado pelo clima/energia (energia limitada); e i1) outro controlado pela
agua disponivel no solo (0 limitada) (Figura 2). No primeiro regime, quando 6 encontra-se acima de
um dado valor critico (6 = 6.,;;), ET independe da 6 (AET = PET). Porém, se 0 encontra-se em
estado de armazenamento inferior a 6.,;;, ocorre o segundo regime (AET < PET), no qual ET varia
linearmente em fun¢do da 0, de acordo com a taxa de variacdo S. Por fim, quando 6 < WP, a
evapotranspiragdo tende a cessar.

Diferencgas entre os pardmetros de Budyko (EF, S e 8,,;;) foram identificadas em escala global
devido principalmente a textura do solo, ao déficit de pressdo de vapor (VPD), a precipitacao e a
estrutura da vegetacdo (Fu et al. 2022). Dados provenientes da FLUXNET2015, rede que
disponibiliza medi¢des globais de fluxo de energia, dgua e CO> (fluxnet.org; Pastorello et al. 2020),
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possibilitaram a Fu et al. (2022) ajustar relagdes EF-0 especificas para os biomas analisados, que
traduzem uma resposta adaptativa de cada local quanto a capacidade de maximizar ET em fun¢do da
0.+ predominante.
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Figura 2 — Defini¢do dos regimes de umidade do solo (0) e evapotranspiragdo. EF denota a fragdo evaporativa,
conforme Eq. 1. Adaptado de Seneviratne et al. (2010).

Supridas as demandas matricial e evaporativa, 8 pode ser convertida em percolacio, que conecta
a precipitacdo as aguas subterraneas (Hillel e Prettyman, 1998; Ward, 1984). Em comparagdo as
contribui¢cdes de recarga localizada (a partir do escoamento superficial retido em depressdes) e
indireta (no leito dos corpos hidricos), a recarga direta (difusa), proveniente da percolacio, predomina
(Freeze e Banner, 1970; Vries, de e Simmers, 2002; Ward, 1984). Também denominada drenagem
profunda ou recarga potencial, a percolagdo consiste no fluxo vertical e descendente de 4gua abaixo
da regido radicular (Freeze e Banner, 1970).

Ambientes com condigdes climaticas umidas apresentam taxas de percolacdo e recarga
aproximadas (Sakakibara et al., 2017). Em contraponto, nos ambientes com limitada disponibilidade
hidrica (desertos aridos e semiaridos, pradarias e savanas) as “perdas” de 0 sdo acentuadas por ET,
especialmente em solos com zonas vadosas espessas (Eilers, Carter ¢ Rushton, 2007; Oliveira et al.,
2017; Schreiner-McGraw e Vivoni, 2017). Nesta situacdo, observa-se um prolongado periodo de
distribuicdo da 0 entre as zonas vadosa e saturada (tempo de laténcia ou de defasagem), com potencial
de reducdo na magnitude de percolacdo (Rossman et al. 2014).

Vale ressaltar que a relagdo direta entre 0 e taxa de percolacdo, apesar de predominante, pode
apresentar excegdes. Estudos apontam um comportamento inverso, a exemplo dos resultados
descritos por Hester et al. (2016) em planicies de inundagdo na Virginia (EUA), com aumento da
percolacdao em solos argilosos com 8 < FC. Bethune et al. (2008) demonstraram ainda auséncia de
correlagdo entre a percolagdo e a umidade antecedente em campos irrigados na Australia.

Adicionalmente, o movimento vertical de 4gua no solo pode apresentar sentido oposto ao da
percolacdo. Isso ocorre quando a umidade profunda migra para a zona de raizes tanto por ascensao
capilar, a partir da zona saturada (Xu et al., 2017), quanto em func¢do da redistribuicao hidraulica,
realizada pelas raizes das plantas, especialmente em savanas neotropicais, como o Cerrado (Caldwell
e Richards, 1989; Moreira et al., 2003).

Diante desse contexto, observa-se que o estoque de 8 e a redistribuicdo via ET e recarga
dependem ndo apenas das condi¢cdes de umidade antecedente (Gaur e Mohanty, 2016; Seneviratne et
al., 2010; Silva e Oliveira, 1999; Zhao et al., 2014). Somam-se a isso o efeito individual ou
combinado dos atributos climaticos, topograficos, pedoldgicos e de uso de cobertura do solo (Farrar
et al. 1994; Rodriguez-Iturbe et al. 2001; Tromp-Van Meerveld e McDonnell 2006), aos quais Jenny
(1994) atribuiu a denominagdo fatores de estado.
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O clima ¢ considerado o fator determinante para a variabilidade espacial e temporal da 6 em
grandes bacias hidrograficas (> 1000 km?) (Jacobs, Bertassello e Rao, 2020; Luiz et al., 2007;
Poltoradnev, Ingwersen e Streck, 2016; Shaman, Stieglitz ¢ Burns, 2004; Vachaud et al., 1984).
Bacias intermediarias (200 — 1000 km?) apresentam padrdes condicionados por atributos topograficos
e da vegetacao (Poltoradnev, Ingwersen e Streck, 2016). Em pequenas bacias (< 200km?), por sua
vez, 0 responde a variagdo temporal das forgantes atmosféricas em funcdo da topografia, sob
condi¢oes umidas (Vereecken et al., 2014; Western, Grayson e Green, 1999), e dos controles
pedologicos e de uso e cobertura do solo, sob condigdes secas (Brocca et al., 2017; Farrar, Nicholson
e Lare, 1994; Wilson, Western e Grayson, 2004).

Grayson et al. (1997) descreveram os estados umido e seco, predominantes em bacias de clima
temperado na Australia (Wagga Wagga: 0,7 km?; Tarrawara: 1,5 km?), como estados preferenciais de
controle nao local (topografia) e controle local (pedologia e vegetacao) da 0, respectivamente. Martini
et al. (2015) avaliaram a ocorréncia dos estados preferenciais estabelecidos por Grayson et al. (1997)
em uma vertente na bacia de cabeceira Schéfertal (1,44 km?), na Alemanha Central, com clima
continental frio (P: 630 mm/ano, temperatura: -24,0 — 6,9°C).

No estado timido, com P > ET e predominio de 0 superior a média anual (0,23 m*/m?), a
declividade (2 — 10%) e o aspecto (parte da area orientada para sul e parte orientada para o norte) da
vertente desempenharam o papel dominante para a organizagao espacial da umidade (Martini et al.
2015a). Isso porque, enquanto a declividade controla a distribuicdo lateral da agua, o aspecto
determina a exposi¢do da superficie a radiagdo solar, com reflexos na temperatura do solo, nas taxas
de ET e, consequentemente, na .

Durante o estado seco (ET > P), Martini et al. (2015) identificaram o predominio dos fluxos
verticais, com infiltracao lenta em decorréncia da condutividade hidraulica reduzida sob baixo teor
de agua no solo, favorecendo a ET. Nesse caso, as propriedades locais do solo (cambissolo e solo
hidromorfico, com porosidade superior a 45% e predominio de silte e areia) determinaram os padrdes
espaciais de 6. Contudo, o estudo ndo levou em consideragdo o efeito da profundidade do aquifero e
restringiu-se a uma vertente com ocorréncia exclusiva de vegetacao campestre.

Semelhante a Martini et al. (2015a), McMillan e Srinivasan (2015), Rosenbaum et al. (2012) e
Swarowsky et al. (2011) apontaram a importincia dos atributos topograficos, no estado umido, e
pedolégicos, no estado seco, em bacias de cabeceira na Nova Zelandia (0,7 km?), na Alemanha (0,27
km?) e na Califérnia (3 km?), respectivamente. Contudo, esses estudos levaram em consideragdo o
efeito do aquifero raso e da proximidade com corpos hidricos na prevaléncia de valores elevados de
0 nas areas menos elevadas da bacia, ao favorecer o umedecimento do solo por capilaridade.

No que diz respeito ao papel da vegetagdo, avaliado nos trés estudos por meio do indice de area
foliar (LAI), observou-se um impacto significativo, porém nao houve concordancia quanto ao sentido
do impacto (incremento ou reducdo) desse fator na 6. Segundo Swarowsky et al. (2011), a
interceptacdo do dossel arboreo de carvalhos (23% P) retardou o umedecimento e reduziu a 6 em
comparagdo com a vegetacao campestre (10% P). Contudo, ao considerar a equivaléncia entre ET e
o percentual de interceptagcdo para a estimativa do balango hidrico, € possivel que uma parcela do
fluxo interno ao caule da vegetacao arborea, caracteristico de savanas, tenha sido desprezado (Tonello
et al., 2021; Tonello e Bramorski, 2021).

Rosenbaum et al. (2012), por sua vez, identificaram que o incremento de LAI, com o
crescimento de coniferas, favoreceu o sombreamento e, consequentemente, reduziu as perdas de agua
via evaporagao direta do solo, resultando em valores mais elevados de 0. No estudo de McMillan e
Srinivasan (2015), essa hipdtese também foi adotada para explicar a prevaléncia do estado imido em
area de vegetagdo arbustiva nativa da Nova Zelandia (Discaria toumatou) em comparacao com areas
de pastagem cultivada para a criacdo de ovinos e bovinos.
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Além de LAI, outros atributos da vegetagao influenciam 6 em sentidos distintos. O tamanho dos
individuos (arboreas: > 5 m; arbustivas: 1 — 5 m; herbaceas: < 1 m) e a profundidade de enraizamento
podem relacionar-se negativamente com 0, devido a ampliacao da extragdo de agua para atender ET.
Essa relacao foi avaliada por Acharya et al. (2017a) na zona radicular do solo (< 3m) em Oklahoma
(EUA), por meio da técnica geofisica de imageamento da resistividade elétrica (ERT), que possibilita
avaliar de modo indireto caracteristicas da subsuperficie, como a 6. O consumo de 6 em areas com
vegetacdo arborea (cedro), em contraponto com a vegetacdo herbacea tipica em pradarias, foi
indicado por valores de resistividade elétrica (p) até 70% maiores no primeiro caso (Acharya,
Halihan, et al., 2017). O resultado foi condizente com a reducdo na percolagdo a 3 metros de
profundidade (cedro: 171 mm/ano; pradaria: 275 mm/ano), estimada por Acharya et al. (2017c) na
mesma area de estudo, por meio de modelagem numérica.

Uma zona resistiva entre 0 ¢ 20 m de profundidade (p > 10000 Q.m) sob eucalipto, ndo
observada em secdes ERT sob cana-de-agucar (p < 4000 Q.m), ressaltaram o possivel aumento na
demanda de 0 para ET naquela classe de cobertura do solo na bacia do corrego Onga, em Sao Paulo
(Coutinho et al., 2020). Mattos et al. (2019) relataram uma redugao de até 40% da recarga de agua
subterranea pelo método de flutuacdo do nivel da dgua como consequéncia da substituicao de
pastagem (ET = 731 mm/ano) por eucalipto (ET = 1014 mm/ano) em uma bacia no interior de Sdo
Paulo.

Krishnaswamy et al. (2013) ressaltam que a relag@o entre uso e cobertura do solo e 0 deve ser
avaliada pela hipdtese do equilibrio entre infiltragdo — ET, tanto em 4reas nativas quanto alteradas.
Formagoes florestais nativas garantem a infiltragdo para suprir as perdas decorrentes de ET, que tende
a superar o montante de formacdes com predominio de arbustivas e herbaceas (Bonell et al., 2010;
Krishnaswamy et al., 2012). A hipotese é valida desde que a condutividade hidraulica do solo seja
mantida, tornando-se um fator relevante para as funcdes hidroldgicas do solo, tais como
armazenamento de 0, recarga e regularizagdo do escoamento de base (Falcdo et al., 2020; Salemi et
al., 2012, 2013; Silva-Junior et al., 2021; Trevisan et al., 2012).

Nesse caso, o acimulo de serrapilheira pode favorecer a infiltracao e reduzir a temperatura do
solo, refletindo em valores elevados de 0 (Acharya, Stebler e Zou, 2017; Bucci, Scholz, Goldstein,
Hoffmann, ef al., 2008; Butler et al., 2012; Oliveira et al., 2015; Villalobos-Vega et al., 2011). Silva-
Junior et al. (2021), por exemplo, reportaram reducdo no armazenamento anual de 0 (cerca de 8,1%)
em resposta a substituicdo da vegetacdo nativa por pastagem, na Floresta Amazonica, possivelmente
em funcdo de alteragdes na condutividade hidraulica do solo. Sistemas agroflorestais (SAFs) de
producao de cacau, analisados por Niether et al. (2017) na Bolivia, indicaram que os efeitos positivos
(manutencao do recobrimento do solo) e negativos (elevacdo de ET) podem ser equilibrados sem
comprometer 0, em comparagao com monoculturas de cacau com predominio de raizes mais rasas.
Resultado semelhante foi observado em uma silvicultura de eucalipto em Sao Paulo (Bosi, Pezzopane
e Sentelhas, 2020). Yang et al. (2014) ressaltam ainda que a densidade do plantio deve ser controlada,
com potencial de mitigar o déficit hidrico do solo.

Apesar dos esforcos em compreender o impacto dos fatores de estado na 0, alguns dos quais
brevemente apresentados nesta revisao, ha incertezas quanto ao predominio, o sentido e o potencial
de impacto deles na 0, especialmente no que diz respeito as condi¢des de uso e cobertura do solo.
Portanto, uma série de hipdteses tem sido formuladas para entender como esses fatores atuam no
controle dos valores médios (no espago e no tempo), na dindmica temporal e na distribuigdo espacial
da 6. De modo geral, as principais caracteristicas abordadas para avaliar a resposta hidrolégica da
paisagem a 0 sdo a memoria e a persisténcia.

Eventos sucessivos de umedecimento e secagem modulam o comportamento da 6. Com isso, o
solo “registra” esses eventos e estabelece condi¢des seguras de armazenamento de agua a partir do
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historico de circunstancias andmalas semelhantes (Bonell et al., 2010; Ghannam et al., 2016). A
memoria refere-se ao intervalo de tempo durante o qual a 6 permanece proxima a essa condigdo de
armazenamento, denominada atrator temporal, até¢ que o efeito da anomalia dissipe. WP e FC sao
atratores comumente utilizados como indicativo de condi¢cdes de armazenamento seco €
aproximadamente umido, respectivamente.

Por meio da analise de frequéncia em séries temporais de 0 obtidas em Idaho (EUA), Chandler
et al. (2017) identificaram os atratores temporais FC, limite de extracdo pelas plantas (PEL, plant
extraction limit) e saturacao de campo (FS, field saturation). FC refere-se ao valor de 8 que prevalece
entre os estados saturado e seco, como visto anteriormente. PEL € um atrator seco, abaixo do qual a
vegetacdo ndo extrai agua para transpiragdo. Apesar de conceitualmente semelhante ao WP, PEL
reconhece que a vegetagao nao necessariamente murcha quando a transpiragao cessa (ou fica lenta).
Valores maximos de 0, definidos como FS, podem representar a saturagdo real, uma vez que O €
pouco frequente em solos bem drenados, como na regido analisada (Chandler et al., 2017).

Adaptagdes na estrutura conceitual proposta por Budyko (1961) tem demonstrado relevancia na
identificacdao da 6., um importante atrator temporal na relagdo 6-ET (Figura 2). Originalmente,
Budyko aplicava-se ao balanco hidrico de longo prazo em escala de bacia, considerando o
armazenamento de dgua no solo em regime estacionario (Budyko, 1961; Chen e Sivapalan, 2020;
Greve et al., 2015). Contudo, estudos recentes tém demonstrado que relagdes empiricas lineares com
platd possibilitam a avaliacdo instantanea da 6 devido a influéncia dos fatores de primeira (P e ET) e
de segunda ordem (fatores de estado) (Chen e Sivapalan, 2020; Fu et al., 2022; Nijzink e Schymanski,
2022; Vargas Zeppetello, Battisti e Baker, 2019).

Alguns estudos identificam a memoria da 0 pelo termo histerese (Chandler et al., 2017; Mascaro
e Vivoni, 2016). Oriundo do grego hystéresis, o termo designa atraso ou tendéncia de manutengao
das propriedades de um sistema mesmo apds a alteragdo dos estimulos que condicionam tal
propriedade (Cambridge, 2022). Na hidrologia ¢ comum a observacdo de fenomenos histeréticos,
como na relagdo entre o potencial matricial € 6 (Genuchten, van, 1980). Relagdes que apresentam
histerese podem indicar a existéncia de fatores limitantes que condicionam a varidvel resposta nao
apenas a variavel preditora, mas também ao historico da variavel resposta.

Chandler et al. (2017) verificaram a histerese nos periodos de umedecimento e secagem do solo
por meio da analise de regressao entre 0 de profundidades consecutivas em um perfil vertical. Outros
estudos tém conduzido anélise equivalente com graficos de dispersao da variabilidade (desvio padrao,
gy, ou o coeficiente de variacdo, CV = agy/60) em fungio da média (), espaciais ou temporais, da
umidade do solo. Rosenbaum et al. (2012) demonstraram a presenga de ciclos histeréticos nessa
relagdo, proposta com um ano de dados de 0 coletados em uma pequena bacia na Alemanha. Antes
disso, a analise da memoria por meio de padrdes histeréticos s6 havia sido identificada e discutida
com experimentos sintéticos, a exemplo de Ivanov et al. (2010).

A persisténcia, por sua vez, equivale ao periodo em que a 6 permanece acima ou abaixo de um
determinado limiar de referéncia (WP, FC, PAW, 6., média, mediana) espacial ou temporal
(Ghannam et al., 2016; Grayson et al., 1997). Na literatura, persisténcia tem sido descrita como
sinonimo de estabilidade temporal (Martini ef al., 2015; Mor et al., 2012; Vachaud et al., 1984) ¢
homogeneizagao (Ivanov et al., 2010) ou em sentido oposto a sua variabilidade temporal e/ou espacial
(McMillan e Srinivasan, 2015; Poltoradnev, Ingwersen e Streck, 2016; Srivastava ef al., 2021).

Detalhes acerca dos métodos de determinacao da persisténcia constam em Vanderlinden et al.
(2012), com destaque para a analise das diferencgas médias relativas de 0 e do coeficiente de correlagao
ranqueado de Spearman (Vachaud et al., 1984), amplamente aplicados na avaliacdo da permanéncia
de padrdes espaciais de 6 ao longo do tempo (Greve et al., 2017; Martini et al., 2015; McMillan et
al., 2011; Mor et al., 2012). A regressao entre medidas de 0 de dias consecutivos com condi¢des



ABRHfcro

Simpésio Brasileiro de
RQ_CUI'SOS Hidricos

semelhantes de 0 (Dong et al., 2022) ou entre a variabilidade e 8 também se demonstram uteis para
analise de persisténcia (Elmaloglou et al., 2016; Fatichi et al., 2015; Wei et al., 2017).

Nesse ultimo caso, ao invés da histerese, avalia-se a forma geral da relagdo variabilidade versus
6, explicada pelos fatores de estado (clima, vegetacio, solo e topografia) que podem determinar uma
gama de valores para a mesma 6 (Vanderlinden et al., 2012). Além disso, o ramo ascendente
(umedecimento) dos graficos de histerese depende predominantemente de P, principal fator para
condicionar a persisténcia acima ou abaixo de determinado limiar (Mascaro e Vivoni, 2016;
Rosenbaum ef al., 2012). Em contrapartida, drenagem e evapotranspiracao, que definem a memoria
da 0, sdo essenciais para estabelecer o ramo de descida (secagem) na relacdo histerética (Ivanov et
al., 2010; Mascaro e Vivoni, 2016).

3.PADROES DE ARMAZENAMENTO E REDISTRIBUICAO DE UMIDADE DO SOLO NO
CERRADO

Ecossistemas com limitada disponibilidade hidrica, a exemplo das Savanas Neotropicais, sdo
caracterizados pelo papel da 6 no controle dos processos hidroldgicos e das respostas fisiologicas e
de crescimento vegetal, que, por sua vez, retroalimentam os padrdes de 0 (Ignace et al., 2007; Jackson
et al., 1999; Potts et al., 2010; Rocha ef al., 2009). O Cerrado, segundo maior bioma brasileiro (area
aproximada de 200 Mha), enquadra-se como uma Savana Neotropical, com temperatura e
precipitagdo anual médias de 23°C e 1500 mm, respectivamente, inverno seco e cerca de 80% da
precipitagdo concentrada na estagao chuvosa (outubro a abril).

Do montante de precipitagdo, uma parcela significativa é convertida em evapotranspiracido, com
valores entre 823 e 1200 mm/ano (1,75 — 3,2 mm/dia), que resultam em recarga média (P-ET) de
aproximadamente 422 mm/ano (Anache et al., 2019; Cabral et al., 2015; Giambelluca et al., 2009;
Hutley, O’Grady e Eamus, 2000; Oliveira et al., 2015, 2017; Rocha et al., 2009; Valle Janior et al.,
2020). Dados de ET extraidos de estudos realizados no Cerrado equiparam-se aos valores médios
observados em torres de fluxo turbulento localizadas em savanas da Australia e da Africa do Sul,
diferindo apenas no periodo predominante da sazonalidade sul-africana (seca: novembro-abril, chuva:
maio-outubro).

Em comparagdo a outros biomas brasileiros, o Cerrado apresenta ET semelhante a Caatinga (ET
MODIS = 0,5 — 4,5 mm/dia, P = 800 mm/ano) e a por¢ao sul da Amazdnia, limitrofe ao Cerrado (ET
MODIS = 1,0 — 4,5 mm, P = 1694 mm/ano); e inferior ao observado no norte da Amazonia (ET
MODIS = 3,0 — 5,0 mm/dia, P = 2286 mm/ano) e na Floresta Atlantica (ET MODIS = 1,58 — 5,09,
1208 mm/ano; P = 2756 mm/ano) (Jiang et al., 2022; Mello et al., 2019; Silva-Junior et al., 2021).
Valores reduzidos de ET no Cerrado em comparagao com as florestas tropicais imidas, especialmente
durante a estagdo seca, devem-se principalmente a limitagcdo de 0 (Cerrado: 0,08 — 0,30 m3*/m?; norte
da Amazoénia: = 0,30 — 0,50 m3/m?, comparativo entre 0 e 20 cm) (Ferreira et al., 2007; Garcia-Montiel
et al., 2008; Giambelluca ef al., 2009; Jiang et al., 2022; Silva-Jinior et al., 2021).

Fu et al. (2022) pontuam que os valores de referéncia para os pardmetros de Budyko EFax (0,0
—0,8), S (0,025 — 0,125) e 6.t (0,0 — 0,15) em savanas refletem uma estratégia de resisténcia ao
estresse hidrico. Valores reduzidos de 6. e elevados de S implicam maior controle e,
consequentemente, menores taxas de ET em comparagdo com as florestas imidas, onde ET depende
principalmente da energia disponivel (Gao et al., 2022; Silva-Junior et al., 2021). Por isso, conhecer
0.rit predominante em determinada regido ¢ essencial na analise da relacdo entre o uso e cobertura
do solo e do papel da 6 no controle dos processos hidroldgicos (Fu ef al., 2022).

Contudo, dados de 6 e ET referentes ao Cerrado ndo integram o FLUXNET2015 e ainda
apresentam analises limitadas da relagdo 0-ET. Semelhante aos atributos climaticos, 0 e cobertura do
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solo mantém uma interacao dinamica e bem definida nas Savanas, uma vez que o sistema clima - solo
- vegetacao ¢ condicionado pela disponibilidade de 4gua no solo (Bucci, Scholz, Goldstein, Meinzer,
et al., 2008; Caylor, Scanlon e Rodriguez-Iturbe, 2009; Pena-Pefia e Irmler, 2016). Esse cenario define
o Cerrado como um mosaico de formagdes campestre (cerrado sujo, campo limpo e campo rupestre,
com LAI: 0,23 m?/m?, densidade: 945 ind/ha, altura: < 2,5 m); savanica (cerrado sentido restrito, com
LAI: 1,45 m?*/m?, densidade > 1000 ind/ha, altura: < 8-10 m, com estrato herbaceo); e florestal (mata
ciliar, mata de galeria, mata seca e cerradao, com LAI: 4,30 m*m?, densidade > 3000 ind/ha, altura:
< 10 m), cuja vegetagdo nativa difere especialmente em resposta as condigdes de déficit hidrico do
solo (Bucci, Scholz, Goldstein, Hoffmann, ef al., 2008; Eiten, 1972; Ferreira et al., 2009; Miranda et
al., 1997).

Em geral, a vegetacdo que se desenvolve em areas com zona vadosa espessa apresenta
variabilidade de estratégias na absor¢ao de agua do solo (Rossatto ef al., 2012). Bucci et al. (2008)
afirmam que o potencial hidrico do solo no Cerrado ¢ substancialmente alterado até 1 m de
profundidade. Contudo, Oliveira et al. (2015), ao compararem formagdes campestres € savanicas,
consideraram que 1,5 m de profundidade ndo ¢ representativo para avaliar o uso da agua pela
vegetacdo, mas permite demonstrar a influéncia dos eventos de precipitagdo e evapotranspiragdo na
dindmica de 0.

Rossatto et al. (2012) verificaram que a umidade profunda (1-4 m) fornece aproximadamente
75% da agua total utilizada pelas formag¢des savanicas. Em regides menos elevadas, por sua vez, a
diversidade vegetal ¢ limitada as espécies adaptadas ao acimulo prolongado de 4gua durante a estacao
umida. Em profundidade, as raizes das plantas lenhosas podem reduzir o volume de dgua disponivel
para percolacdo e recarga, conforme observado nos levantamentos realizados em fitofisionomias
savanicas e campestres, com recarga estatisticamente superior (p < 0,05) para a formagao campestre
(aproximadamente 30% da precipitagdo).

A redistribuicao hidraulica (transferéncia de umidade profunda para camadas superiores do solo
pelas raizes), fendmeno comum no Cerrado, equivale a cerca de 5% do fluxo total de agua realizado
pelas plantas, sendo suficiente para manutengao da 6 acima da 0., porém sem impactos significativos
no potencial de 4gua no solo durante a estacdo seca (Moreira ef al., 2003). Além do papel das raizes
na captacdo e redistribui¢do de 4gua em subsuperficie, a vegetacdo do Cerrado pode influenciar os
padrdes de 6 por meio dos processos de interceptacao, infiltragdo e evapotranspiragdo.

Esse cendrio torna-se ainda mais complexo diante de mudangas na cobertura do solo. De acordo
com Klink e Machado (2005) e MapBiomas (2020), cerca de 46% (91,6 Mha) da vegetagdo nativa do
Cerrado foi transformada por atividades antrdpicas. Esse percentual inclui areas de pastagem (31%),
monoculturas de soja (9%), florestas comerciais plantadas (silviculturas, 2%), cultivo de cana-de-
acucar (2%), dentre outras culturas (2%), assemelhando-se aos padrdes observados nas savanas
australianas e sul-africanas (Hoffmann e Jackson, 2000; MapBiomas, 2020; Rodrigues et al., 2022,
Smith et al., 2014).

Da vegetacao remanescente no Cerrado, 80% encontram-se em locais de interesse para o cultivo
de soja (MapBiomas, 2020), cuja demanda devera ser acentuada nas proximas décadas (FAO, 2018).
Outro setor com previsao de ampliagdo relevante ¢ a silvicultura, direcionada a atender as crescentes
demandas por produtos derivados de madeira (carvao e celulose) (Espirito-Santo et al., 2016; Payn
et al., 2015). Os plantios de eucalipto representam um montante superior a 70% da silvicultura
brasileira (IBA, 2019; IBGE, 2017), devido a sua ampla capacidade de adaptagdo em diversas regioes,
propagacao clonal e rapido crescimento (Castro ef al., 2016).

A introducdo de culturas que produzem serapilheira com elevada taxa de decomposicao, tais
como soja e pastagem exotica, tem resultado em aumento na temperatura do solo e alteragdo no
armazenamento de 0 (Pena-Pefia e Irmler, 2016; Rodrigues ef al., 2022). Dados mensais obtidos entre



s

Simpésio Brasileiro de
RQ_CUI'SOS Hidricos

2009 e 2011 evidenciaram valores elevados de 6 em pontos de monitoramento sob cobertura vegetal
nativa em comparagdo com areas de pastagem no Cerrado mineiro (Mor et al., 2012). Em alguns
casos, 0 solo exposto apresenta maiores valores de 0 ao final do evento chuvoso (Villalobos-Vega et
al., 2014) como consequéncia da reducdo na interceptacdo tanto a partir da vegetacdo quanto por
meio da serrapilheira (Acharya, Stebler e Zou, 2017). Contudo, apds os processos de redistribui¢ao,
a umidade no solo exposto tende a ser alterada, com reducdo significativa em comparagao ao solo
coberto (Villalobos-Vega et al., 2011).

A substituicdo do Cerrado ndo perturbado (ET = 1201 mm/ano) por pastagem (ET = 645
mm/ano) e cana-de-acticar (ET = 801 mm/ano) no interior de Sdo Paulo, apesar de reduzir ET,
ampliaram a parcela de escoamento superficial que poderia ser convertida em recarga, devido ao
impacto nas propriedades hidraulicas do solo (Anache et al., 2019). Falcao et al. (2020) verificaram
um aumento significativo no escoamento superficial entre areas de cerrado sensu stricto (0,00 mm),
cerrado regenerado (5,33 mm), eucalipto (8,65 mm) e pastagem (42,23 mm) com simulagdo
hidrologica considerando P com intensidade de 60,00 mm/hora.

Hoffmann e Jackson (2000) e Rodrigues et al (2022) demonstraram ainda que a conversao do
Cerrado em d4reas de pastagem pode reduzir em aproximadamente 10% a precipitagdo, devido a
reducdo nas taxas regionais de ET (Jung et al., 2010; Meirelles, Farias e Franco, 2003), resultando
num incremento da ocorréncia de periodos secos. Vale ressaltar que as savanas sdo responsaveis por
cerca de 21% das taxas globais de ET, que representa um importante servi¢o ecossistémico para a
regulacdo do ciclo hidrologico terrestre (Jung et al., 2010; Miralles et al., 2011).

4. CONSIDERACOES FINAIS

No contexto da ecohidrologia, a 0 ¢ investigada considerando principalmente sua relagdo com a
vegetacdo e as consequéncias dessa relacdo no tempo de deslocamento e no particionamento da dgua
na CZ, bem como na 6 remanescente apos a secagem do solo (Martini et al., 2015; Mathias, Sorensen
e Butler, 2017; Sprenger et al., 2016). Argumenta-se que a estrutura da vegetacdo nativa favorece a
"homogeneiza¢do" nas condi¢des de umidade antecedente aos eventos de precipitagdo (Ivanov et al.,
2010). Esse efeito tem sido associado ao papel da vegetagdo na regulacdo dos fluxos de agua,
produzindo memoria ao armazenamento de umidade do solo e persisténcia, espacial e temporal, de
estados imidos em comparagdo as condi¢cdes de solo exposto (Bonell et al., 2010; Ghannam et al.,
2016; Laio et al., 2009; Potts et al., 2010).

Considerando o caso do Cerrado, a vegetagdo nativa difere especialmente em resposta as
condi¢des de déficit hidrico do solo (Eiten, 1972). Segundo o estudo de Oliveira et al. (2017), os
incrementos de tamanho, densidade e indice de cobertura foliar entre as formagdes campestre e
savanica aumentam a demanda por dgua no solo & medida que diminuem a recarga de agua
subterranea no Cerrado. Além disso, logo que a 0 ¢ reduzida abaixo do limite critico nos periodos
sazonais de menor disponibilidade hidrica no Cerrado, essa varidavel passa a limitar a
evapotranspiracao — uma das principais vias de perda de 4gua dos ecossistemas terrestres —, ao passo
que na Floresta Tropical Umida ¢ a radiagdo que cumpre esse papel (Koster et al., 2003; Rocha et al.,
2009). Assim, dado que a evapotranspiragdo e a recarga de aquiferos tanto controlam quanto
dependem da 0, ambos se demonstram sensiveis aos processos ecohidrologicos no Cerrado (Cabral
etal.,2015; Miller et al., 2012).

Por mais que os padrdes de 6 no Cerrado tenham sido descritos, hd lacunas de pesquisa que
precisam ser preenchidas tanto sobre o comportamento dessa variavel nas diferentes formacdes de
vegetacdo nativa que o compde quanto em fungao dos impactos das mudangas na cobertura do solo.
Ha evidéncias de que a progressiva substitui¢do da vegetagdo nativa por culturas, pastagens e
silvicultura tem repercutido em impactos negativos nos processos hidroldgicos, com redugao anual
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média de 10% do volume de 4agua reciclada para a atmosfera (Rodrigues et al., 2022). O estudo das
consequéncias desses disturbios antrdpicos, tanto nos estoques quanto nos fluxos de d4gua no Cerrado,
¢ um desafio de pesquisa adicional.

A variavel 0 possui um papel determinante para que essas questdes sejam compreendidas a partir
dos padroes de campo, avaliadas com subsidio do sensoriamento remoto e representadas em modelos
hidrol6gicos. No entanto, a verificagdo dessas hipoteses tem como empecilho a caréncia de
observagoes de alta resolugdo de 0, tais como as fornecidas por redes automaticas densas, capazes de
capturar a heterogeneidade espacial do solo e da vegetacdao (Ochsner et al., 2013). A manutengado das
redes de monitoramento e a disponibilidade dos dados de campo demandam recursos financeiro e
humano elevados, principalmente no caso de medigdes da umidade do solo (Fekete et al., 2012;
McMillan et al., 2011; Mor et al., 2012). Em um estudo recente de revisao sistematica, Melo et al.
(2020) evidenciaram que apenas 26 das 60 bacias de monitoramento hidrologico existentes no Brasil
apresentam medic¢oes de 0, caracterizadas ainda pela reduzida frequéncia na aquisi¢do de dados.

Conhecer o comportamento da 0 e os fatores que condicionam sua memoria e persisténcia, bem
como identificar padrdes que possibilitam a parametrizagdo e, consequentemente, a modelagem de
processos hidroldgicos vinculados a 0 sdo objetivos centrais no estudo das zonas criticas (Nimmo et
al., 2021). Em especial, observa-se uma tendéncia em entender os efeitos da incorporagdo da relagao
empirica de Budyko, derivada de dados de campo e/ou do sensoriamento remoto, como subsidio a
avaliagdo dos mecanismos e processos que controlam a interacdo dgua — vegetacdo e os impactos
diretos das atividades antrdpicas no armazenamento e na redistribui¢do de umidade do solo.
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