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MONITORAMENTO INTELIGENTE DA QUALIDADE DA ÁGUA: 
PREDIÇÃO DE ALCALINIDADE NA BACIA DO RIO GUANDU 

UTILIZANDO TÉCNICAS DE INTELIGÊNCIA ARTIFICIAL 

 
Diogo Cabral Zaror1; Leonard Barreto Moreira2; Leila Weitzel Coelho da Silva3  

Abstract: This study aimed to predict alkalinity levels in raw water samples collected at an intake 
point in the Guandu River Basin (Rio de Janeiro, Brazil). Physicochemical data were analyzed at 2-
hour intervals between January 2020 and April 2023, totaling 14,579 samples. The methodology 
employed deep learning models—GRU, TFT, NHITS, and KAN—evaluated using MAE, sMAPE, 
and RMSE metrics.The TFT model outperformed others, achieving the lowest errors: MAE (1.129), 
sMAPE (2.7%), and RMSE (1.932), compared to NHITS (MAE=1.481), GRU (MAE=1.274), and 
KAN (MAE=1.234). Training and testing plots confirmed high prediction accuracy, validating its 
efficacy. Results demonstrate that TFT is the most suitable approach for alkalinity prediction in this 
context, with potential applications in environmental monitoring and water resource management. 

Resumo: Este estudo teve como objetivo predizer os níveis de alcalinidade em amostras de água 
bruta coletadas em um ponto de captação na bacia do Rio Guandu (RJ). Foram analisados dados 
físico-químicos coletados a cada 2 horas entre janeiro de 2020 e abril de 2023, totalizando 14.579 
amostras. A metodologia empregou modelos de aprendizagem profunda (deep learning) — GRU, 
TFT, NHITS e KAN—avaliados pelas métricas MAE, sMAPE e RMSE. O modelo TFT destacou-se 
com os melhores resultados: MAE de 1,129, sMAPE de 2,7% e RMSE de 1,932, superando os demais 
(NHITS: MAE=1,481; GRU: MAE=1,274; KAN: MAE=1,234). Os gráficos de treinamento e teste 
confirmaram alta precisão nas predições, validando sua eficácia. Concluiu-se que o TFT é a 
abordagem mais adequada para prever alcalinidade nesse contexto, oferecendo potencial aplicação 
em monitoramento ambiental e gestão hídrica. 

Palavras-Chave – Previsão de alcalinidade; Aprendizagem profunda; Bacia do Rio Guandu. 
 
INTRODUÇÃO 

A água é um recurso fundamental para a manutenção da vida, desempenhando um papel vital 
no consumo humano, nas atividades de lazer, na irrigação agrícola e em diversos outros setores. O 
Brasil, reconhecido por sua abundância hídrica, enfrenta desafios significativos relacionados à 
degradação dos recursos aquáticos em algumas regiões (de Castro, 2022). Mudanças na 
disponibilidade, qualidade e quantidade de água têm impactos profundos não apenas no equilíbrio 
dos ecossistemas, mas também na sobrevivência de todas as formas de vida. Nesse cenário, a 
conservação dos recursos hídricos emerge como uma prioridade fundamental, não apenas para a 
sustentabilidade ambiental, mas também para o desenvolvimento econômico e social, garantindo que 
as gerações futuras possam usufruir desse bem essencial. 

No Brasil, a gestão de recursos hídricos é compartilhada entre órgãos federais e estaduais. A 
Agência Nacional de Águas e Saneamento Básico (ANA) regula o uso da água e implementa a 
Política Nacional de Recursos Hídricos; O Conselho Nacional do Meio Ambiente (CONAMA) 
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estabelece diretrizes ambientais, incluindo os padrões de enquadramento dos corpos d’água definidos 
na Resolução CONAMA nº 357/2005; e o Instituto Estadual do Ambiente (INEA) fiscaliza e monitora 
a qualidade da água no estado do Rio de Janeiro. Esses atores, embora principais, atuam em conjunto 
com comitês de bacia, como o Comitê de Bacia Hidrográfica do Rio Guandu (CBH Guandu), e 
entidades municipais para garantir a gestão integrada e sustentável das águas. 

A previsão da qualidade da água tornou-se uma área de pesquisa essencial devido à crescente 
demanda por recursos hídricos frente aos desafios do crescimento urbano, geração de resíduos e 
mudanças climáticas. O uso de tecnologias avançadas para monitoramento e predição é fundamental 
para a gestão sustentável desses recursos (J. Luo et al., 2024; Yao et al., 2025). Embora modelos 
estatísticos tradicionais, como regressão linear, Autoregressivo (AR - AutoRegressive) e 
Autoregressivo Integrado de Médias Móveis (ARIMA - AutoRegressive Integrated Moving Average), 
sejam utilizados, eles apresentam limitações diante da complexidade dos dados. Por isso, métodos 
baseados em aprendizado de máquina, como Redes Neurais Artificiais (ANN – Artificial Neural 
Networks), Máquina de Vetores de Suporte (SVM - Support Vector Machine) e Árvores de Decisão 
(DT – Decision Trees), têm se destacado por sua maior capacidade de capturar padrões não lineares, 
embora ainda enfrentem desafios em previsões de longo prazo (W. Luo et al., 2024). 

Estudos recentes   têm destacado a importância da predição de parâmetros físico-químicos da 
água, como a alcalinidade, em corpos hídricos como rios, córregos, reservatórios, lagos e lagoas. A 
alcalinidade é um parâmetro crítico, pois está diretamente relacionada à capacidade da água de 
neutralizar ácidos e manter a estabilidade do pH. Essa característica influencia a eficiência dos 
processos de tratamento, além de assegurar a qualidade da água para consumo humano e o equilíbrio 
dos ecossistemas aquáticos (Guerra & Silva, 2018).  Nesse contexto, modelos baseados em 
aprendizagem profunda (deep learning), como Redes Neurais Recorrentes (Recurrent Neural 
Networks – RNN), Memória de Longo Curto Prazo (LSTM – Long Short-Term Memory) e Unidade 
Recorrente com Portões (GRU - Gated Recurrent Units), têm se destacado por sua capacidade de 
capturar padrões temporais complexos. Além disso, abordagens híbridas, como CNN-LSTM e 
BiLSTM-GRU, vêm sendo aplicadas com sucesso, aprimorando a precisão das previsões ao explorar 
correlações entre múltiplos parâmetros da qualidade da água (Prasad et al., 2022; Song & Yao, 2022; 
Zhang et al., 2023). 

Diante do contexto apresentado, o principal objetivo deste estudo foi analisar os parâmetros 
físico-químicos de amostras de água bruta coletadas em um dado ponto de coleta ao longo da bacia 
hidrográfica do Rio Guandu, com o intuito de predizer, por meio de técnicas de inteligência artificial, 
os níveis de alcalinidade no ponto de captação. 

METODOLOGIA 
Área de estudo 

Os dados deste estudo foram coletados na Bacia do Guandu, no estado do Rio de Janeiro, que 
abrange uma área de 1.385 km² e é drenada pelo rio Guandu, cuja origem está no Ribeirão das Lajes, 
passando a ser denominado Guandu após se unir ao rio Santana. Seus principais afluentes incluem os 
rios dos Macacos, Santana, São Pedro, Poços, Queimados e Ipiranga. O rio se divide em dois braços 
com barragens operadas pela CEDAE e conecta-se à lagoa do Guandu, seguindo até a Baía de 
Sepetiba pelo Canal do São Francisco. Parte significativa de sua vazão provém da transposição do rio 
Paraíba do Sul, viabilizada pela usina hidrelétrica da Light3, que contribui com cerca de 60% do 
volume. O Guandu é a principal fonte de abastecimento de água para mais de 9 milhões de pessoas 

 
3 Empresa responsável pela distribuição de energia elétrica na cidade do Rio de Janeiro e em municípios da região 
metropolitana. 
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na região metropolitana do Rio de Janeiro, o que torna sua preservação e monitoramento 
fundamentais. 
Característica do conjunto de dados 

No presente estudo, foram avaliados diversos tipos de dados físico-químicos, com o objetivo 
de identificar padrões e possíveis anomalias com relação ao parâmetro objeto da pesquisa. Para isso, 
45 variáveis foram analisadas no ponto de coleta 22. Essas variáveis abrangem uma ampla gama de 
parâmetros, como pH, turbidez, oxigênio dissolvido, condutividade elétrica, temperatura da água, 
entre outros, coletados em diferentes frequências e condições. A escolha do ponto 22 deve-se à sua 
representatividade na bacia estudada, sendo um local estratégico para o monitoramento da qualidade 
da água que abastece a Estação de Tratamento de Água (ETA) do Guandu, operada pela CEDAE. Os 
dados foram coletados a cada 2 horas entre janeiro de 2020 e abril de 2023, totalizando 14.579 
instâncias de dados. 
Seleção, análise e tratamento dos dados 

Neste estudo, foram adotados dois critérios para a exclusão de parâmetros: baixa frequência de 
coleta (menos de uma medição a cada duas horas) e alta taxa de dados faltantes (≥40%), visando 
garantir a qualidade e a robustez das análises. Conforme os critérios estabelecidos, os demais pontos 
de monitoramento foram excluídos por apresentarem frequência de coleta insuficiente (<=4 
observações/semana) e elevada taxa de dados faltantes (>40%). 

A Análise Exploratória de Dados (EDA– Exploratory Data Analysis) incluiu estatísticas 
descritivas, como média, desvio padrão, valores extremos e percentual de dados faltantes, além da 
análise visual das séries por meio de gráficos, boxplots sazonais e decomposição em componentes de 
tendência, sazonalidade e ruído. Avaliaram-se a estacionariedade, por meio de testes como o Dickey-
Fuller, e a dependência temporal, com as funções de autocorrelação (ACF – Autocorrelation 
Function) e autocorrelação parcial (PACF – Partial Autocorrelation Function). Também foram 
analisadas possíveis correlações cruzadas entre variáveis hidrológicas e eventuais mudanças 
estruturais nas séries. A análise de correlação foi realizada usando os coeficientes de Spearman, 
adequado para relações monotônicas, e o Maximal Information Coefficient (MIC), capaz de capturar 
associações não lineares e complexas, proporcionando uma visão abrangente das interações entre os 
parâmetros hidrológicos (Reshef et al. 2011). Também foi verificada a conformidade dos parâmetros 
com a Resolução CONAMA 357/2005. Os outliers da série de alcalinidade foram mantidos, pois 
refletem comportamentos extremos relevantes ao estudo. Picos e quedas abruptas podem estar ligados 
a eventos naturais ou processos no Rio Guandu, sendo essenciais para capturar a variabilidade real e 
melhorar a precisão das previsões. 

Modelos preditivos de séries temporais 
A metodologia adotada neste estudo utilizou modelos avançados de deep learning — GRU 

(Gated Recurrent Unit) (Cho et al., 2014), TFT (Temporal Fusion Transformer) (Lim et al., 2021), 
(Neural Hierarchical Interpolation for Time Series) e o KAN (Kolmogorov-Arnold Network) (Liu et 
al., 2025) - devido à sua capacidade de capturar não linearidades, sazonalidades e dependências de 
longo prazo presentes em séries hidrológicas. A implementação foi realizada com a biblioteca Neural 
Forecast, considerando a normalização dos dados pelo RobustScaler, adequado por ser menos 
sensível a outliers (Pedregosa et al., 2011). O modelo foi configurado para previsão da alcalinidade 
com horizonte de 12 horas e janelas expansivas, incorporando lags e covariáveis selecionados por 
análises estatísticas e de correlação. A otimização dos hiperparâmetros foi feita via Grid Search, 
testando combinações de parâmetros como número de unidades ocultas, taxa de aprendizado, dentre 
outros. Para evitar o overfitting, aplicou-se a técnica de Chained Temporal Cross-Validation 
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(Cerqueira et al., 2020) com 8 folds e horizonte de 12 horas, respeitando a sequência temporal dos 
dados. Complementarmente, foram adotadas estratégias como EarlyStopping, dropout e 
regularização L2, garantindo maior robustez dos modelos e evitando sobreajuste (Prechelt, 1998). 

Métricas de avaliação 
Para avaliar o desempenho dos modelos, foram adotadas as métricas MAE (Mean Absolute 

Error - Erro Absoluto Médio), sMAPE (Symmetric Mean Absolute Percentage Error - Erro 
Percentual Absoluto Médio Simétrico) e o RMSE (Root Mean Square Error  - Raiz do Erro 
Quadrático Médio), amplamente utilizadas na literatura. O MAE mede o erro absoluto médio, sendo 
robusto a outliers e de fácil interpretação, com bom desempenho quando próximo à metade do desvio 
padrão dos dados Willmott e Matsuura 2005). O sMAPE, uma métrica percentual simétrica, avalia 
erros relativos e evita distorções causadas por valores próximos de zero, sendo considerado excelente 
quando abaixo de 10%. Já o RMSE penaliza mais fortemente grandes erros, sendo adequado para 
contextos em que outliers são relevantes, e indica bom ajuste quando seu valor se aproxima do desvio 
padrão da série (Taylor 2001). A escolha dessas métricas considera as características dos dados e 
proporciona uma análise equilibrada da precisão dos modelos. 

RESULTADOS E DISCUSSÕES 
Os parâmetros selecionados para o modelo foram Alcalinidade (mg/L), pH (grandeza 

adimensional), Cor Aparente (Hz) e Turbidez (NTU), conforme os critérios de inclusão e exclusão 
definidos na metodologia.  As estatísticas descritivas desses parâmetros estão apresentadas na Tabela 
1, incluindo média (𝑥), desvio padrão (s), valores mínimos (min) e máximo (max), permitindo uma 
análise detalhada da distribuição dos dados. 

Tabela 1. Estatísticas básicas dos parâmetros de qualidade da água. 

Parâmetro 𝒙	± 𝒔 MIN MAX 

Alcalinidade 18.474 ± 1.934 6 58 

pH 6.650 ± 0.158 5,4 9,4 

Cor aparente 61.856 ± 80.647 0 3600 

Turbidez 19.939 ± 26.383 1,8 1200 

A análise dos parâmetros de qualidade da água revela que a alcalinidade apresenta média de 
18,474 mg/L e baixa variabilidade (±1,934), indicando estabilidade química e menor suscetibilidade 
a flutuações ambientais. Esse valor médio observado encontra-se dentro da faixa considerada normal, 
conforme relatórios internos que classificam os valores de referência em três níveis: Normal (15-22 
ppm), Alerta (23-29 ppm) e Crítico (> 30 ppm). O pH também se mantém relativamente constante 
𝑥 	± 𝑠 = 6,650 ±	0,158, sugerindo um equilíbrio químico. Em contraste, a cor aparente e a turbidez 
exibem alta dispersão e amplas faixas de variação, com máximos de 3600 e 1200, respectivamente, 
sugerindo influência de fatores sazonais ou eventos pontuais de contaminação. Esses resultados 
indicam que, enquanto a alcalinidade e o pH tendem a permanecer estáveis, a turbidez e a cor aparente 
podem sofrer oscilações significativas, impactando diretamente a qualidade da água.  

É importante ressaltar que, conforme estabelecido pela Resolução CONAMA 357/2005, os 
limites médios para águas doces (classes Especial, 1, 2 e 3), características da bacia estudada, são: 
pH entre 6,0 e 9,0; Cor Aparente <= 75 uH; e Turbidez de até 40 NTU (classes Especial e 1) e 100 
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NTU (classes 2 e 3) (do Meio Ambiente (CONAMA), 2005). Os parâmetros analisados indicam que: 
pH (6,650 ± 0,158; 5,4–9,4) apresenta média dentro da faixa preconizada pela CONAMA (6,0–9,0), 
embora com variações pontuais; Turbidez (19,939 ± 26,383; 1,8–1200 NTU) está dentro do limite 
para classes Especial e 1 (<=40 NTU), mas com picos críticos; Cor Aparente (61,856 ± 80,647; 0–
3600 Hz) excede o limite de 75 Hz, indicando presença significativa de substâncias dissolvidas; e 
Alcalinidade (18,474 ± 1,934; 6–58 mg/L), embora sem limites estabelecidos, encontra-se em faixas 
consideradas normais. 

A Figura 1 ilustra a decomposição temporal da série de alcalinidade ao longo do período 
estudado. O gráfico superior apresenta os dados observados, seguido pela tendência, que mostra o 
comportamento de longo prazo da série. O terceiro gráfico exibe a sazonalidade, destacando padrões 
cíclicos recorrentes. Por fim, o gráfico inferior apresenta o residual, que captura as variações não 
explicadas pela tendência ou sazonalidade. 

Figura 1. Decomposição temporal da série de alcalinidade no ponto de coleta 22, no período de 2020 a 2023 

 
Os dados observados de alcalinidade ao longo dos anos de 2020 a 2023 (Figura 3), revela um 

padrão sazonal, com variações significativas associadas aos períodos de verão. Observam-se picos de 
alcalinidade nos meses de dezembro, janeiro e fevereiro, especialmente nos anos 2020, 2021 e 2023, 
coincidindo com a estação mais quente do ano. Esses picos são particularmente pronunciados nos 
anos analisados, sugerindo uma possível influência de fatores climáticos ou ambientais típicos do 
verão, como aumento da temperatura, maior taxa de evaporação ou alterações nos padrões de 
precipitação. A tendência geral (gráfico Trend da Figura 1) da alcalinidade mostra um crescimento 
consistente a partir do mês de setembro, atingindo seus valores máximos no mês de janeiro. Após o 
pico em janeiro, há uma tendência de declínio gradual a partir de março, seguida por um período de 
relativa estabilidade que se estende até setembro. Essa estabilidade pode indicar um equilíbrio nas 
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condições ambientais durante os meses mais frios, com menor variabilidade nos fatores que 
influenciam a alcalinidade. 

Já o componente de sazonalidade (gráfico Season da Figura 1) apresenta um comportamento 
que acompanha a tendência até meados de 2021, sugerindo uma relação consistente entre os fatores 
que influenciam a alcalinidade e os ciclos sazonais durante esse período. No entanto, a partir de 
meados de 2021, observa-se um aumento na variabilidade da sazonalidade, indicando possíveis 
mudanças nos fatores ambientais, operacionais ou climáticos que afetam a alcalinidade. Por outro 
lado, o componente residual da série temporal (gráfico Resid da Figura 1) mostra-se uniforme ao 
longo de todo o período analisado, sugerindo que os modelos utilizados para decompor a série 
capturaram adequadamente os padrões de tendência e sazonalidade. A ausência de flutuações 
significativas no residual indica que não há grandes anomalias ou ruídos não explicados pelos 
componentes principais 

A Figura 2 exibe uma matriz de correlação que compara os coeficientes obtidos pelos métodos 
de Spearman e MIC entre a Alcalinidade e os demais parâmetros analisados. 

Figura 2.Análise de correlação da Alcalinidade com os parâmetros pH, Cor Aparente e Turbidez 

 
Na análise de correlação, constatou-se que há baixa associação entre a alcalinidade e os demais 

parâmetros medidos no mesmo ponto de coleta, independentemente das técnicas utilizadas. Essa 
baixa correlação indica que a alcalinidade apresenta um comportamento relativamente independente 
em relação aos outros parâmetros analisados, sugerindo que sua variação não é fortemente 
influenciada por eles no local de estudo. Portanto, optou-se por excluir essas variáveis na elaboração 
dos modelos, uma vez que não contribuem significativamente para a previsão da alcalinidade, 
priorizando apenas os lags temporais da própria variável alvo. 

Diante desse cenário, optou-se por realizar a previsão utilizando apenas os valores históricos de 
alcalinidade no ponto 22 em um dos pontos de coleta de água. Essa decisão tem como objetivo 
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simplificar o modelo de previsão, evitando a inclusão de variáveis que não contribuem 
significativamente para a explicação da variabilidade da alcalinidade. 

Em relação a performance qualitativa dos modelos, os gráficos entre os dados observados e os 
modelos KAN, GRU, TFT e NHITS treinados são ilustrados na Figura 3. Os gráficos ilustram a 
capacidade de cada modelo em capturar os padrões temporais da série de alcalinidade, destacando a 
precisão das previsões em relação aos dados reais. 

Com base na Figura 3, observa-se que o algoritmo KAN (superior esquerdo) acompanha bem 
a tendência dos dados, apresentando um ajuste regularizado e sendo capaz de capturar picos atípicos. 
O GRU (superior direito) exibe um ajuste mais suave e com menor variabilidade, porém responde 
menos a mudanças bruscas, como evidenciado nos picos de janeiro de 2021 e 2023. O TFT (inferior 
esquerdo) mantém um ajuste próximo aos valores observados, exibindo a menor variabilidade entre 
os modelos, mas com menor sensibilidade a variações locais, especialmente após setembro de 2022. 
Por outro lado, o NHITS (inferior direito) apresenta maior reatividade às oscilações e capta picos com 
maior sensibilidade, porém com maior variabilidade, o que pode indicar overfitting. 

Figura 3. Gráficos dos valores observados com e os modelos treinados KAN (superior esquerdo), GRU (superior 
direito), TFT (inferior esquerdo) e NHITS (inferior direito) 

 
A Figura 4 ilustra a comparação entre dados observados e valores preditos pelos modelos KAN, 

GRU, TFT e NHITS. Os gráficos apresentam o desempenho dos modelos na previsão dos padrões de 
alcalinidade ao longo de 4 dias (48 horas), dada a configuração de 8 folds com horizonte de previsão 
de 12 horas (6 passos de 2 horas cada). As linhas verticais pontilhadas demarcam os limites entre 
cada fold, que avançam sequencialmente 12 horas, permitindo avaliar a capacidade preditiva dos 
modelos em múltiplas janelas temporais. 
 



                                                                              

XXVI Simpósio Brasileiro de Recursos Hídricos (ISSN 2318-0358) 8 

 

 

 

 

 
Figura 4. Comparação entre dados observados e valores preditos pelos modelos KAN (superior esquerdo), GRU 

(superior direito), TFT (inferior esquerdo) e NHITS (inferior direito). 

 
Com base nos gráficos da Figura 4, observa-se que os algoritmos GRU e o TFT apresentam 

previsões suavizadas, capturando a tendência geral da série, mas com dificuldades em responder a 
variações abruptas. Dentre eles, o TFT destaca-se por equilibrar melhor a estabilidade das previsões 
com a identificação de padrões sazonais, ainda que subestime picos extremos. O KAN exibe maior 
variabilidade, mas não consegue capturar adequadamente os picos e vales observados nos dados reais. 
O NHITS se mostra mais responsivo às oscilações da série, acompanhando de maneira mais próxima 
as variações dos valores reais, mas com maior sensibilidade ao ruído. No entanto, nenhum dos 
modelos conseguiu acompanhar com precisão as variações abruptas da série temporal. 

A Tabela 2 apresenta um resumo das métricas de avaliação MAE, sMAPE e RMSE utilizadas 
para comparar o desempenho dos modelos TFT, GRU, NHITS e KAN na previsão da alcalinidade. 
Valores menores indicam melhor ajuste do modelo aos dados observados. 

Tabela 2. Resumo das métricas de avaliação para os algoritmos TFT, GRU, NHITS e KAN para alcalinidade 

Algoritmo MAE SMAPE (%) RMSE 
TFT 1,129 2,7 1,932 
NHITS 1,481 3,5 2,199 
GRU 1,274 3,1 1,962 
KAN 1,234 3,0 1,993 

 
Com base nos resultados da Tabela 2 os melhores resultados para a predição da alcalinidade 

foram obtidos pelo algoritmo TFT, com um MAE de 1,129, indicando que, em média, as previsões 
desviam-se dos valores observados em aproximadamente 1,13 mg/L. Esse valor representa cerca de 
6\% da média observada (18,474 mg/L), o que sugere uma boa precisão do modelo. O sMAPE de 

Figura 1. Comparação entre dados observados e valores preditos pelos modelos KAN (superior esquerdo), GRU (superior 
direito), TFT (inferior esquerdo) e NHITS (inferior direito). 
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0,027% reforça essa conclusão, evidenciando que o erro percentual é extremamente baixo, o que é 
particularmente relevante para aplicações práticas que exigem alta confiabilidade. Por fim, o RMSE 
de 1,932 indica que, embora haja algumas previsões com erros maiores, a dispersão geral dos erros é 
controlada, ficando abaixo de 2 mg/L. Considerando o desvio padrão dos dados observados (1,934), 
o RMSE mostra que o modelo consegue capturar a variabilidade da série temporal de forma eficiente, 
mantendo os erros dentro de uma faixa aceitável em relação à dispersão natural dos dados. Esses 
resultados destacam a capacidade do KAN em prever a alcalinidade com precisão e consistência. 

CONSIDERAÇÕES FINAIS 
Este trabalho teve como objetivo principal analisar os parâmetros físico-químicos de amostras 

de água bruta coletadas em diversos pontos ao longo da bacia hidrográfica do Rio Guandu, com o 
intuito de predizer, por meio de técnicas de inteligência artificial, os níveis de alcalinidade no ponto 
de captação. Para isso, foram aplicados diversos algoritmos de aprendizado de máquina, com 
destaque para o KAN (Kolmogorov-Arnold Network), cuja performance foi avaliada com base em 
gráficos de treinamento e teste, além das métricas como o Erro Absoluto Médio (MAE), o Erro 
Percentual Absoluto Médio Simétrico (sMAPE) e a Raiz do Erro Quadrático Médio (RMSE).  

Os resultados alcançados demonstraram que o algoritmo TFT apresentou a melhor performance 
para a predição de alcalinidade. Os gráficos de treinamento e teste evidenciaram uma alta aderência 
entre os valores observados e os preditos, com erros mínimos e consistência ao longo da série 
temporal. As métricas de avaliação corroboraram essa conclusão, indicando que o TFT não apenas 
capturou os padrões subjacentes aos dados, mas também generalizou bem para o conjunto de teste, 
reforçando sua aplicabilidade em cenários reais. Comparado aos demais métodos testados, o TFT 
destacou-se pela sua capacidade de lidar com a complexidade dos dados e pela precisão nas predições. 

No entanto, o estudo apresenta algumas limitações. A análise não considerou os impactos de 
variáveis temporais e espaciais, como flutuações sazonais, eventos climáticos extremos ou variações 
geográficas ao longo da bacia hidrográfica, que podem influenciar significativamente os níveis de 
alcalinidade. A ausência dessas covariáveis pode ter restringido a capacidade dos modelos de capturar 
toda a complexidade do fenômeno estudado. Trabalhos futuros devem explorar a incorporação dessas 
variáveis, bem como de dados ambientais, como temperatura, precipitação, vazão, dentre outros, para 
potencializar o poder preditivo dos modelos e ampliar sua aplicabilidade. 

Conclui-se que este estudo contribui significativamente para o avanço do uso de métodos de 
deep learning aplicados na área de hidrologia, em particular para a análise de parâmetros físico-
químicos de água bruta, como a alcalinidade, em contextos de captação e tratamento em Estações de 
Tratamento de Água (ETA). A performance superior do KAN reforça a viabilidade de técnicas 
avançadas de predição para otimizar a gestão de recursos hídricos, destacando a importância de 
abordagens inovadoras e multidisciplinares.  
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