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Abstract: This study investigates the feasibility of automating the identification of anomalies in earth 

dams using convolutional neural networks (CNNs). In light of the growing number of poorly 

documented dams under the National Dam Safety Policy in Brazil, the research aims to streamline 

safety inspections by reducing manual image analysis time through a CNN-based model. The 

methodology involves building a database with 400 images for each identified anomaly type and 

developing a customized CNN architecture, drawing on elements from LeNet-5, AlexNet, and 

VGG16. The results show that the proposed model can effectively identify most anomalies, although 

further adjustments are required to achieve full process automation. It is concluded that CNNs are a 

promising tool to support dam safety inspections, with significant potential to reduce the time required 

for assessing dam conditions. 
 

Resumo: Este estudo investiga a viabilidade da automatização da identificação de anomalias em 

barragens de terra por meio do uso de redes neurais convolucionais (CNNs). Considerando o aumento 

expressivo do número de barragens com documentação incompleta no âmbito da Política Nacional 

de Segurança de Barragens (PNSB), a proposta visa otimizar o processo de inspeção, reduzindo o 

tempo necessário para a análise manual de registros fotográficos. A metodologia adotada contempla 

a construção de uma base de dados composta por 400 imagens para cada tipo de anomalia selecionada, 

bem como o desenvolvimento de uma arquitetura de CNN customizada, inspirada em elementos das 

redes LeNet-5, AlexNet e VGG16. Os resultados obtidos demonstram que o modelo é eficaz na 

identificação das principais manifestações patológicas, embora sejam recomendados ajustes 

adicionais para viabilizar a automatização integral do processo. Conclui-se que o uso de CNNs 

representa uma solução promissora para apoio às inspeções de segurança de barragens, com potencial 

significativo para a redução do tempo e do esforço técnico na triagem e caracterização de anomalias. 
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 INTRODUÇÃO 

A segurança de barragens representa um componente essencial na gestão dos recursos hídricos 

e energéticos, afetando diretamente o abastecimento de água, a geração de energia elétrica e o controle 

de cheias. No Brasil, a Política Nacional de Segurança de Barragens (PNSB) estabelece diretrizes 

para o monitoramento, manutenção e documentação dessas estruturas, com o objetivo de preservar 

sua integridade e prevenir incidentes com potencial de grandes impactos sociais e ambientais. 

Entre os instrumentos técnicos previstos pela PNSB, destacam-se os relatórios de inspeção de 

segurança, que devem incluir registros fotográficos sistemáticos de possíveis manifestações 

patológicas. No entanto, a triagem manual dessas imagens ainda é a prática predominante nos 

processos de elaboração dos relatórios técnicos. Essa abordagem demanda tempo considerável dos 

engenheiros responsáveis e está sujeita a falhas humanas. 

Com o avanço das técnicas de inteligência artificial e visão computacional, torna-se possível 

explorar ferramentas que automatizem etapas desses processos. Neste contexto, o estudo avalia a 

viabilidade técnica e operacional da aplicação de redes neurais convolucionais no reconhecimento 

automático de anomalias visuais em barragens de terra, a partir de registros fotográficos coletados 

em campo. A proposta é que, por meio da aplicação dessas técnicas, seja possível acelerar o processo 

de triagem e classificação das imagens, com precisão controlada na identificação das patologias e 

contribuindo para um monitoramento mais eficiente das estruturas. 

 

FUNDAMENTAÇÃO TEÓRICA 

Barragens no Brasil 

Segundo o texto da Lei 12.334 (2010), atualizada pela Lei 14.066 (2020), é denominada 

barragem “qualquer estrutura construída dentro ou fora de um curso permanente ou temporário de 

água, em talvegue ou em cava exaurida com dique, para fins de contenção ou acumulação de 

substâncias líquidas ou de misturas de líquidos e sólidos, compreendendo o barramento e as estruturas 

associadas;”. 

Estas estruturas podem ser organizadas em diferentes grupos em função do seu material de 

construção. A Tabela 1 apresenta os valores percentuais e absolutos de barragens e seus materiais 

construtivos no Brasil. Cabe salientar que os valores absolutos são restritos as barragens que possuem 

informações sobre materiais construtivos, o que representa apenas 34,5% do total (ANA, 2022). 

 

Tabela 1: Resumo das informações disponibilizadas pelo Sistema Nacional de Informações sobre Segurança de 

Barragens (SNISB), quanto ao material construtivo 

Tipo de material Quantidade absoluta Quantidade relativa 

Terra 6437 77,79% 

Concreto 938 11,34% 

Enrocamento 517 6,25% 

Materiais menos convencionais 383 4,63% 

Adaptado de: ANA (2022). 

 

Gameleira e Amaral (2018), afirmam que as barragens de terra são as mais numerosas devido 

não apenas a disponibilidade da matéria prima, mas também devido à permissividade de uma 

fundação menos robusta, o que viabiliza a implementação destas obras. 
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 Entre as principais estruturas que compões uma barragem independente do material de 

construção entre eles estão: reservatório, ombreiras, barramento, fundação, sistema de drenagem, 

instrumentação, órgãos extravasores e tomada d’água. 

 

Manifestações patológicas em barragens 

Semelhante ao uso empregado na área da saúde, o termo patologia descreve o tipo de 

manifestação que afeta negativamente, tanto o desempenho esperado das estruturas civis, quanto a 

sua vida útil. Pode ser definida também como a ciência que busca compreender os malefícios 

provenientes do material empregado, método construtivo ou fatores externos, visando identificar suas 

origens, métodos de degradação e possíveis evoluções (Gonçalves, 2015). 

O Volume II do Manual do Empreendedor, elaborado pela ANA (2016), apresenta entre suas 

considerações uma série de manifestações patológicas definidas como as mais frequentes observadas 

em barragens e suas estruturas associadas, considerando o seu tipo de material construtivo. 

 

Aprendizado de máquina 

O aprendizado de máquina (machine learning) é um subcampo da inteligência artificial (IA) 

que desenvolve algoritmos capazes de aprender padrões e tomar decisões com base em dados. Esses 

modelos tornam-se progressivamente mais precisos à medida que expostos a novos dados. 

Entre os métodos mais comuns estão o aprendizado não supervisionado, envolvendo a análise 

de dados sem rótulos, onde o objetivo é descobrir padrões ocultos ou agrupamentos nos dados, e o 

aprendizado supervisionado, onde os algoritmos são treinados com dados rotulados, sendo fornecidas 

tanto a entrada quanto a saída desejada (Cerqueira, 2010). 

A avaliação dos modelos de aprendizado de máquina é crucial para garantir que eles funcionem 

da maneira esperada e forneçam resultados precisos. Métodos comuns de avaliação incluem a divisão 

dos dados em conjuntos de treinamento e teste, validação cruzada e o uso de métricas de desempenho, 

como precisão, recall, F1-score (James et al., 2013). 

O aprendizado profundo é uma subcategoria do aprendizado de máquina que utiliza redes 

neurais artificiais profundas para modelar padrões complexos em grandes conjuntos de dados. Essa 

abordagem foi responsável por revolucionar alguns campos, como visão computacional, descrita no 

item a seguir. 

 

Visão computacional 

Para dos Santos (2017), a visão computacional compreende a obtenção de dados a partir de um 

método de emulação da visão humana. Dentro da visão computacional o reconhecimento de imagem 

é apenas uma das áreas responsáveis pela análise dos pixels e padrões que são utilizados na 

identificação de objetos, expressões faciais, caracteres, entre outros. 

As redes neurais convolucionais (CNNs) são um tipo de método de aprendizado de máquina, 

inspirado no funcionamento do cérebro humano para realizar tarefas complexas. Esse algoritmo tem 

demonstrado alto desempenho em tarefas de visão computacional, como detecção de objetos, 

segmentação e reconhecimento de imagens, como demonstrado por Pereira (2023). 

O funcionamento dessas redes neurais baseia-se em um sistema de camadas que aplicam 

convoluções aos dados de entrada, utilizando uma série de filtros aprendidos, o que aumenta a 

robustez do algoritmo. 
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 METODOLOGIA 

O desenvolvimento da pesquisa estruturou-se em dois eixos complementares: a concepção de 

um modelo computacional baseado em redes neurais convolucionais para detecção de anomalias em 

imagens de barragens, e a construção de um banco de dados especializado para seu treinamento e 

validação. O modelo computacional foi desenvolvido em linguagem Python. 

 

Desenvolvimento do Modelo 

A etapa inicial do script é composta pela importação de bibliotecas, selecionadas de modo a 

suprir as necessidades da construção do modelo, entre elas: PyTorch; torchvision; Matplotlib; NumPy; 

e Scikit-learn. 

A arquitetura da CNN desenvolvida neste estudo foi concebida para equilibrar a eficiência 

computacional com alta acurácia diagnóstica na identificação de anomalias visuais em estruturas de 

barragens. O modelo adotado é fruto da combinação de elementos estruturais consagrados em três 

arquiteturas clássicas: LeNet-5, que serviu como inspiração principal na definição da estrutura 

sequencial de camadas convolucionais seguidas por camadas de pooling; AlexNet, que influenciou a 

ampliação da profundidade da rede, a inserção de múltiplas camadas convolucionais e a adoção de 

técnicas de regularização como o dropout; e VGG16, cuja contribuição se refletiu no uso de filtros 

convolucionais com pequenas dimensões (3×3), favorecendo a extração detalhada de padrões locais. 

A Figura 1 e a Figura 2 apresentam o diagrama esquemático da arquitetura da CNN, estruturada 

em dez etapas. O processamento tem início com a entrada de uma imagem RGB, que passa 

sucessivamente por três camadas convolucionais (etapas 1, 3 e 5), com 32, 64 e 128 filtros 

respectivamente. Essas camadas são responsáveis pela extração de mapas de características, 

correspondentes a padrões relevantes na imagem, como texturas, bordas e contornos de trincas ou 

infiltrações. Em conjunto, são aplicadas camadas de normalização do batch (batch normalization), 

que estabilizam a distribuição das ativações ao longo do treinamento, acelerando o processo de 

convergência e conferindo maior robustez à rede. 

Entre cada camada convolucional, nas etapas 2, 4 e 6, inserem-se camadas de max pooling, cuja 

função é reduzir pela metade a dimensionalidade espacial dos dados em cada eixo (altura e largura), 

ao selecionar o valor máximo de regiões específicas do mapa de características. Esse procedimento 

contribui para tornar a rede menos sensível a pequenas variações espaciais ou distorções nas imagens 

de entrada, além de reduzir a carga computacional. 

 

Figura 1: Diagrama ilustrativo dos processos 1 a 6 da arquitetura de CNN proposta. 

 

 

A fase de classificação é composta por três camadas totalmente conectadas (etapas 7, 9 e 10), 

também conhecidas como fully connected layers. Nessas camadas, cada neurônio é conectado a todas 

as ativações da camada anterior, permitindo a combinação de características extraídas anteriormente 
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 e promovendo a tomada de decisão. A última camada fully connected possui o número de neurônios 

igual ao número de classes predefinidas no problema de classificação (por exemplo, “normal” e 

“anomalia”). 

Para mitigar o risco de overfitting — fenômeno em que o modelo se ajusta excessivamente aos 

dados de treinamento e perde capacidade de generalização para novos dados — foi incluída a camada 

de dropout (etapa 8), que atua desativando aleatoriamente uma fração dos neurônios durante o 

treinamento, forçando a rede a desenvolver representações mais robustas e menos dependentes de 

caminhos específicos. 

 

Figura 2: Diagrama ilustrativo dos processos 7 a 10 da arquitetura de CNN proposta. 

 

 

Previamente à entrada dos dados na arquitetura da CNN apresentada, são aplicados alguns 

métodos de pré-processamento dos dados, que visam a melhoria do desempenho, generalização e 

robustez do modelo a partir da padronização das entradas e da utilização de ferramentas de data 

augmentation, tais como as funções: resize, responsável por padronizar a entrada de dados; 

randomhorizontalflip, randomizar o espelhamento da imagem; randomrotation, randomizar o ângulo 

da entrada dos dados; totensor, transformar o valor padrão dos pixels; e normalize, que normaliza o 

valor transformado dos pixels. 

O fluxo de gerenciamento de dados foi estruturado utilizando o pipeline do PyTorch, com início 

no carregamento automatizado por meio da função ImageFolder, que atribui rótulos binários 

(true/false) com base na estrutura hierárquica dos diretórios. A seguir, realizou-se uma partição 

estratificada aleatória dos dados em 80% para treinamento e 20% para teste, assegurando 

representatividade proporcional de ambas as classes. 

Para a otimização, adotou-se o algoritmo Adam (com learning rate = 0.001, β₁ = 0.9 e β₂ = 

0.999), amplamente reconhecido por sua eficiência em espaços de parâmetros não convexos. A 

função de perda utilizada foi a CrossEntropyLoss, ajustada com pesos inversamente proporcionais à 

frequência das classes no conjunto de dados, estratégia fundamental para mitigar o viés causado pelo 

desbalanceamento entre classes. 

Complementando o regime de treinamento, implementou-se decaimento dinâmico da taxa de 

aprendizado (StepLR), com redução de 90% a cada 10 épocas, além da técnica de early stopping com 

paciência de 10 épocas — medidas que visaram tanto a economia de recursos computacionais quanto 

a prevenção de overfitting. 

A avaliação do desempenho do modelo foi conduzida a partir de um conjunto de métricas 

multidimensionais, entre elas: as curvas de perda de treinamento e validação; a matriz de confusão; 

métricas variadas de classificação (precisão, recall e F1-score); e a acurácia global como medida 

sintética de desempenho. 
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Construção do Banco de Dados 

Considerando o formato de entrada e o método de carregamento previamente definidos no 

desenvolvimento do modelo, iniciou-se a construção do banco de dados de imagens, etapa essencial 

para a robustez e fidedignidade dos experimentos subsequentes. Foram utilizadas 1.600 imagens 

coletadas durante inspeções mensais de segurança realizadas ao longo de 2023 em cinco diferentes 

barragens de terra, contemplando distintos elementos estruturais 

A definição das categorias de anomalias foi orientada tanto por sua recorrência nos registros 

técnicos quanto pelo impacto potencial sobre a estabilidade das estruturas (Figura 3). Entre as classes 

selecionadas estão: (A) formigueiros, cupinzeiros e tocas de animais, que compartilham 

características morfológicas semelhantes e podem comprometer a integridade geotécnica da 

barragem; (B) canaletas obstruídas ou danificadas, cuja falha de funcionamento pode comprometer o 

escoamento superficial e provocar erosões; (C) vegetação excessiva, fator que dificulta o 

monitoramento visual e pode indicar ausência de manutenção; e (D) falhas no revestimento 

superficial, geralmente associadas à exposição direta do maciço ao intemperismo. 

 

Figura 3: Exemplo de anomalias rotuladas como positivas em cada classe. 

 

 

Para cada uma das quatro categorias, foram reunidas 400 imagens rotuladas, sendo 20% 

positivas, ou seja, com a anomalia em questão visível e claramente identificável, e 80% negativas, 

consistindo em registros diversos das estruturas onde a ocorrência não está presente. Essa 

distribuição, juntamente com técnicas de rebalanceamento no modelo, garantiram um conjunto 

balanceado para fins de treinamento e validação do modelo de classificação binária. 

As imagens foram organizadas em diretórios estruturados hierarquicamente por classe e por 

rótulo, conforme ilustrado na Figura 4. Tal organização serve não apenas para o carregamento 

automatizado via módulo ImageFolder do PyTorch, como também para assegurar a escalabilidade 

do banco de dados, permitindo a futura incorporação de novas categorias de anomalias por simples 

replicação da lógica de armazenamento. 

 

  

  

A B 

D C 
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Figura 4: Representação esquemática dos diretórios que compõe o acervo fotográfico. 

 

 

A curadoria técnica desempenhou papel central na qualidade do banco de dados. Foram 

removidas imagens que apresentavam iluminação visivelmente inadequada, desfocagem acentuada, 

ruído digital elevado ou resolução inferior a 1280×960 pixels. Também foram descartadas aquelas 

em que as anomalias estavam parcialmente ocluídas ou ocupavam uma fração muito reduzida do 

campo visual, comprometendo sua identificação. 

Por outro lado, registros que, embora não ideais em termos de ângulo, luminosidade ou 

resolução, ainda se mostravam coerentes com situações operacionais reais foram intencionalmente 

mantidos. Tal escolha visou expor o modelo a condições próximas da realidade de campo, 

contribuindo para sua capacidade de generalização e robustez frente a variações de captura. 

 

RESULTADOS E DISCUSSÕES 

A análise comparativa dos quatro modelos de redes neurais convolucionais treinados para 

detecção de anomalias em barragens revelou padrões significativos quanto ao desempenho, 

estabilidade e aplicabilidade prática. A avaliação integrou múltiplas métricas, entre estas: curvas de 

perda; acurácia global; matrizes de confusão; e indicadores estatísticos (precisão, recall, F1-score). 

 

Curvas de perda 

Os gráficos de perda, representados na Figura 5, evidenciaram comportamentos distintos 

durante o treinamento e validação para cada uma das classes. Para a classe A, o modelo convergiu 

com o melhor resultado na 7ª época, iterações posteriores diminuíram a assertividade da validação 

em detrimento da melhora no treinamento. Já para a classe B, o modelo convergiu com o melhor 

resultado na 18ª época, iterações posteriores obtiveram resultados bastante próximos, mas ainda assim 

com eficiência inferior. 

Quanto a classe C, o modelo convergiu com o melhor resultado na 44ª época, são observáveis 

indícios de overfitting a partir da 20ª época, onde o gráfico começa a apresentar fenômenos de 

espelhamento entre as curvas. Por fim, para a classe D, o modelo convergiu com o melhor resultado 

na 25ª época, iterações posteriores obtiveram resultados relativamente próximos, mas assim como a 

classe anterior observasse o fenômeno de overfitting. 
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Figura 5: Gráficos de perda no treinamento e validação da CNN. 

 

 

Acurácia global 

A acurácia agregada as classes foi relativamente alta, variando entre 78%, para vegetação 

excessiva, e 90%, para canaletas obstruídas. Entretanto, a métrica mostrou-se enganosa para avaliação 

contextual. Como um exemplo, o modelo para formigueiros alcançou 85% de acurácia global, mas 

revelou certas fragilidades quando analisado sob perspectivas complementares, apresentando taxas 

relativamente altas de falsos positivos em função da melhoria da acurácia. Essa limitação da acurácia 

como indicador único reforça a necessidade de métricas estratificadas para problemas com 

desbalanceamento amostral. 

 

Matriz de confusão 

Na Tabela 2 estão representados os resultados das matrizes de confusão para as quatro classes 

de anomalias treinadas, com a quantificação de verdadeiros positivos (VP), falsos positivos (FP), 

verdadeiros negativos (VN) e falsos negativos (FN). Não são realizadas analises diretamente sobre 

os valores de cada uma das validações dos modelos treinados, uma vez que esses dados são utilizados 

para gerar as métricas de análise do próximo subitem. 

 

Tabela 2: Resumo dos resultados das matrizes de confusão para todas as classes estabelecidas 

Modelo VP FP VN FN 

Formigueiros 12 11 56 1 

Canaletas quebradas e obstruídas 11 4 61 4 

Vegetação excessiva 5 8 57 10 

Falha no revestimento 10 7 61 2 

 

Métricas complementares 

A Tabela 3 apresenta os resultados das métricas de desempenho obtidas na etapa de validação 

do modelo, conforme os critérios definidos anteriormente. Observa-se que, em termos de precisão, 

métrica que quantifica a proporção de verdadeiros positivos entre todas as previsões positivas 

realizadas pelo modelo, a classe "canaletas quebradas ou obstruídas" obteve o melhor desempenho, 

indicando baixa taxa de falsos positivos. 
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 Por outro lado, a métrica de recall, que avalia a capacidade do modelo em identificar 

corretamente os exemplos positivos presentes no conjunto de validação, ou seja, sensível à ocorrência 

de falsos negativos, apresentou sua melhor performance na classe "formigueiros", o que demonstra a 

maior abrangência do modelo na detecção dessa anomalia específica. 

Por fim, o F1-score, que representa a média harmônica entre precisão e recall, fornecendo uma 

medida equilibrada entre esses dois aspectos, indicou desempenho superior para a classe "canaletas 

quebradas ou obstruídas", que demonstrou, portanto, maior consistência global ao longo do 

treinamento. 

 

Tabela 3: Resumo das metricas complementáres de precisão, recall e F1-score 

Modelo Precisão Recall F1-score 

Formigueiros 0,52 0,92 0,67 

Canaletas quebradas e obstruídas 0,73 0,73 0,73 

Vegetação excessiva 0,38 0,33 0,36 

Falha no revestimento 0,59 0,83 0,69 

 

 

CONSIDERAÇÔES FINAIS 

Levando em consideração o objetivo central deste estudo, verificar a viabilidade de automatizar 

a identificação de anomalias recorrentes em barragens de terra, os resultados obtidos demonstraram 

que a proposta é viável e efetiva, mesmo diante das limitações metodológicas e instrumentais 

apresentadas.  

Os dados provenientes das etapas de treinamento e validação corroboram a hipótese de que 

redes neurais convolucionais (CNNs) são capazes de identificar anomalias visuais relevantes em 

registros fotográficos de inspeções, representando um avanço promissor na modernização dos 

métodos de monitoramento de segurança de barragens. 

Entre as classes analisadas, a que apresentou maior sensibilidade às limitações do estudo foi a 

referente à “vegetação excessiva”. Essa fragilidade pode ser atribuída à alta variabilidade morfológica 

da anomalia, decorrente da diversidade de espécies vegetais, padrões de crescimento e localização 

sobre a estrutura inspecionada, o que dificulta a generalização da rede a partir de um conjunto limitado 

de exemplos. 

As perspectivas de aprimoramento do modelo envolvem tanto a ampliação e qualificação do 

banco de dados quanto ajustes na própria arquitetura da rede. No que se refere ao acervo fotográfico, 

recomenda-se: a ampliação do número total de imagens; a experimentação de diferentes proporções 

entre amostras positivas e negativas; e a adoção de critérios de rotulagem mais específicos e 

homogêneos. Já no escopo do modelo de CNN, apontam-se como estratégias promissoras: o uso de 

esquemas alternativos de ponderação por classe; a introdução de camadas adicionais de 

processamento; a substituição por arquiteturas mais recentes e robustas; e o aumento da resolução das 

imagens de entrada. 

Apesar das limitações identificadas, os resultados gerais foram satisfatórios e sugerem que há 

elevado potencial para o aprofundamento e a aplicação prática dessa abordagem. A maior parte dos 

modelos testados demonstrou desempenho consistente e capacidade de generalização na identificação 

automática das anomalias para as quais foram treinados, o que reforça a viabilidade técnica da 

proposta. 
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