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Abstract: Given the growing concern with sustainability and the rational use of natural resources, 

water utilities have intensified efforts to reduce water losses in distribution systems. The largest 

portion of this waste is associated with leaks and pipeline bursts, for which traditional detection 

methods are generally slow and have low scalability. In this context, Artificial Intelligence (AI)-based 

techniques have gained prominence due to their ability to identify leaks more quickly and accurately. 

This literature review aims to consolidate, analyze, and categorize recent studies on the use of AI for 

the detection and localization of real water losses, as well as to highlight trends and future 

perspectives in this research field. 

 

Resumo: Diante da crescente preocupação com a sustentabilidade e o uso racional dos recursos 

naturais, as companhias de saneamento têm intensificado os esforços para reduzir as perdas de água 

nos sistemas de distribuição. A maior parcela desse desperdício está associada a vazamentos e 

rompimentos de tubulações, cujos métodos tradicionais de detecção são geralmente lentos e de baixa 

escalabilidade. Nesse contexto, técnicas baseadas em Inteligência Artificial (IA) ganham destaque 

pela capacidade de identificar vazamentos de forma mais rápida e precisa. Esta revisão bibliográfica 

tem como objetivo consolidar, analisar e categorizar a literatura recente sobre o uso de IA na detecção 

e localização de perdas reais, além de apontar tendências e perspectivas futuras nesse campo de 

pesquisa. 
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1. INTRODUÇÃO 

As perdas de água em sistemas de distribuição são divididas em reais e aparentes, sendo a 

primeira oriunda de vazamentos e rompimentos de tubulações e a segunda da submedição de 

aparelhos de medição de água e de fraudes e ligações clandestinas. Segundo dados do Sistema 

Nacional de Informações em Saneamento Básico (SINISA, 2023), o Brasil perde cerca de 40,31% de 

toda a água tratada na distribuição, sendo que há uma disparidade desse indicador entre os estados, 

por exemplo com Alagoas apresentando 69,9% de perdas e Goiás 25,7%, conforme ilustrado pela 

Figura 1. Dentro desse percentual, as perdas reais representam a maior parcela, enfatizando a 

necessidade de medidas de controle para sua redução. 
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Figura 1. Perdas totais de água na distribuição 

 

Fonte: SINISA (2023) 

 

As técnicas tradicionais de detecção de vazamentos incluem a utilização de geofones e 

aparelhos acústicos que dependem de varreduras constantes nas redes. Com a crescente 

instrumentação e monitoramento de informações dos sistemas de distribuição, o volume de dados 

coletados aumentou, possibilitando a aplicação de técnicas baseadas em Inteligência Artificial (IA), 

mais especificamente de Aprendizado de Máquina (AM), do inglês, Machine Learning, para 

quantificar e localizar vazamentos com maior precisão e rapidez. 

Este trabalho busca sintetizar os trabalhos de IA da literatura, comparando as metodologias, 

elencando os aspectos positivos e negativos a apontando as tendências futuras nesse campo de 

aplicação.  

2. METODOLOGIAS DE DETECÇÃO E LOCALIZAÇÃO DE VAZAMENTOS 

Segundo Romero-Ben et al. (2023), as metodologias para detecção e localização de vazamentos 

podem ser divididas em (1) baseadas em modelos, que utilizam softwares de modelagem hidráulica, 

(2) orientada a dados, onde os métodos utilizam dados de sensores e medidores para coletar a analisar 

padrões sem a necessidade de modelos hidráulicos e (3) híbrido de modelo e orientada a dados, que 
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 combina as abordagens 2 e 3. Como o enfoque deste trabalho é a análise dos métodos de IA, as 

metodologias baseadas em modelos não serão analisadas.  

2.1. Metodologias orientadas a dados 

Nas metodologias orientadas a dados são necessárias a instalação e coleta de dados dos sistemas 

de abastecimento. Normalmente, os dados coletados são de medidores de vazão e pressão na rede, 

sinais acústicos e de vibração ou são utilizados robôs dentro das tubulações ou veículos terrestres não 

tripulados. Tais dados são utilizados em diferentes métodos para detecção e localização dos 

vazamentos, podendo ser divididas em duas categorias, aprendizado supervisionado e não-

supervisionado:  

Aprendizado Supervisionado: os algoritmos são treinados com um conjunto de dados que 

diferencia os vazamentos dos dados normais de operação do sistema. Assim, os algoritmos 

classificam os novos dados de acordo com os padrões aprendidos previamente. Algumas técnicas que 

utilizam estes tipos de algoritmos incluem Support vector machine (SVM), k-Nearest Neighbours (k-

NN), Redes Neurais Convolucionais (RNC) e Recorrentes (RNR), Randon Forest e Gradient 

Boosting. 

No trabalho de Basnet et al. (2023) foi realizado um estudo comparativo, avaliando o impacto 

da complexidade das características do vazamento (tamanho, localização) no desempenho de dois 

modelos supervisionados: perceptron multi-camadas e redes neurais convolucionais. As redes neurais 

convolucionais apresentaram desempenho superior, produzindo resultados mais generalizáveis do 

que o perceptron multi-camadas.  

Zhou et al. (2019) utilizaram dados de pressão e Peng et al. (2024) utilizaram sinais acústicos 

em redes neurais convolucionais para classificar a presença ou não de vazamentos. O primeiro 

trabalho empregou uma densa arquitetura de redes convolucionais conectadas denominada FL-

DenseNet, que permitiu ao modelo aprender padrões mais complexos, extraindo as características 

distintivas associadas aos vazamentos. Já o segundo utilizou o PS-ResNet18 após um pré-

processamento dos sinais coletados pelos sensores. Ao aplicar o pré-processamento, as partes mais 

afetadas por ruídos externos foram eliminadas, possibilitando que o modelo fosse treinado com as 

reais assinaturas acústicas dos vazamentos. Ambas as abordagens obtiveram sucesso na detecção e 

localização dos vazamentos utilizando diferentes técnicas de RNC. 

A utilização de um veículo terrestre não tripulado para detecção de vazamentos através da 

diferença de temperaturas foi objeto de estudo no trabalho de Awwad et al. (2023). O veículo foi 

equipado com um sensor infravermelho de temperatura de baixo custo e dois sistemas de rastreamento 

de posição. Os resultados coletados foram utilizados em uma RNC para distinguir os padrões de 

operação normais dos vazamentos e os resultados obtidos mostraram uma precisão de mais de 77% 

na detecção de vazamentos.  

As Redes Neurais Recorrentes (RNR) foram utilizadas por Wang et al. (2020) para detecção de 

rompimentos de redes em distritos de medição e controle (DMC), utilizando um modelo de três 

estágios. No primeiro estágio o modelo é treinado com a vazão prevista na entrada do DMC. A seguir, 

a vazão prevista é comparada à vazão medida e no último estágio é aplicado um filtro para classificar 

as divergências nos vazamentos. Caso a divergência esteja acima de um patamar, é rotulada como 

anomalia. As anomalias identificadas só são classificadas como vazamentos quando detectadas em 

múltiplos intervalos de tempo consecutivos. O modelo demonstrou alta precisão e sensibilidade na 

detecção, porém, por analisar apenas a vazão na entrada dos Distritos de Medição e Controle (DMC), 

não foi capaz de localizar os vazamentos, exigindo uma etapa posterior para essa finalidade. 
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 Aprendizado Não Supervisionado: Para contornar a falta de dados rotulados, por exemplo, 

vazamentos e não vazamentos, ou de respostas pré-definidas, o aprendizado não supervisionado 

identifica padrões em busca de anomalias ou desvios do comportamento normal do sistema.  

Um exemplo são os algoritmos de clustering, que agrupam os dados de operação e identificam 

pontos que não pertencem a nenhum grupo normal. O trabalho de Wu et al. (2016) aplicou esta 

técnica, agrupando os dados históricos de vazão em vários grupos distintos. Desta forma, a vazão 

atual é comparada ao cluster correspondente, e considerada um potencial vazamento caso esteja muito 

distante do valor central desse cluster. Essa técnica possui como maior vantagem não necessitar de 

dados já rotulados para treinamento, porém, similar ao trabalho de Wang et al. (2020), somente 

detecta os vazamentos. 

Blázquez-García et al. (2021) investigaram a classificação de séries temporais de vazão 

utilizando uma abordagem auto-supervisionada, na qual os próprios dados de entrada foram usados 

para gerar pseudo-rótulos. O algoritmo aplicou diferentes transformações aos dados normais e 

atribuiu os pseudo-rótulos conforme a transformação realizada. Em seguida, o modelo foi treinado 

para reconhecer essas transformações. Um possível vazamento é identificado quando os dados 

analisados não correspondem a nenhuma das transformações conhecidas, ou seja, não recebem um 

pseudo-rótulo, indicando um comportamento anômalo. Essa metodologia mostrou-se particularmente 

eficiente em situações em que não há um histórico suficiente de dados rotulados de vazamentos, uma 

vez que o algoritmo foi treinado com os dados representativos do funcionamento normal do sistema. 

2.2. Metodologias baseadas em modelos e híbridas 

As baseadas em modelo utilizam um modelo hidráulico da rede, como por exemplo o EPANET 

(Rossman, 2000) para simular seu comportamento. A detecção e localização ocorrem ao se otimizar 

o cenário de vazamento que melhor explica as diferenças entre as pressões e vazões medidas em 

campo e aquelas simuladas pelo modelo, como demonstrado por Sophocleous et al. (2019). A 

principal vantagem dessa técnica é a sua interpretabilidade física, mas sua eficácia é altamente 

dependente da calibração precisa do modelo, sendo muito sensível a incertezas em parâmetros como 

cadastro atualizado, rugosidade das tubulações e a demanda dos consumidores.  

Para mitigar a necessidade de um modelo calibrado, que demanda informações apuradas de 

cadastro de redes e consumidores e com a finalidade de extrair informações a partir de bases de dados, 

surgiram as metodologias híbridas. Estas metodologias integram a robustez dos modelos físicos com 

a flexibilidade da IA, operando basicamente de duas formas: ou o modelo hidráulico é usado para 

gerar dados sintéticos e realistas para treinar um algoritmo de aprendizado de máquina, superando a 

escassez de dados de campo; ou um modelo de IA é usado para reduzir o espaço de busca ou pré-

localizar uma área, tornando a análise subsequente do modelo físico mais rápida e eficiente. Essa 

metodologia foi explorada em trabalhos como os de Corzo et al. (2023) e Romero-Ben et al. (2022), 

e mostrou-se particularmente eficiente em cenários complexos, com a localização de múltiplos 

vazamentos, representando uma metodologia alternativa na detecção e localização de perdas de água. 

3. DESAFIOS E INCERTEZAS NA IMPLEMENTAÇÃO 

Apesar do grande potencial, a aplicação de IA para detecção de vazamentos enfrenta desafios 

significativos, como amplamente discutido por Doss et al. (2023) em sua revisão sobre incertezas nos 

métodos de localização de vazamentos. 

Qualidade e Disponibilidade de Dados: Os dados de campo são frequentemente ruidosos, 

incompletos e, o mais importante, desbalanceados (há muito mais dados de operação normal do que 

de vazamentos). Isso torna o treinamento de modelos supervisionados um desafio e pode levar a altas 

taxas de falsos alarmes. Liu et al. (2024) utilizaram o Long Short-term Memory GAN (LSTM-GAN) 
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 para gerar um conjunto de dados de vazamentos a partir de dados reais para treinar seu modelo 

generativo.  

Incerteza do Modelo: Nos métodos baseados em modelo, incertezas nos parâmetros 

(rugosidade, diâmetro real) e nas entradas (padrões de demanda) se propagam, afetando a precisão da 

localização dos vazamentos. 

Complexidade da Rede e Múltiplos Vazamentos: Redes grandes e com muitos loops são 

computacionalmente desafiadoras. Além disso, a maioria dos métodos foi projetada para localizar um 

único vazamento. A ocorrência simultânea de múltiplos vazamentos é um problema muito mais 

complexo, que apenas recentemente começou a ser abordado com técnicas que combinam clustering 

e computação de alto desempenho (Li et al., 2022; Corzo et al., 2023). 

Diferenciação de Eventos: Um modelo de IA precisa ser robusto o suficiente para distinguir um 

vazamento de outras anomalias hidráulicas, como a abertura de um hidrante para combate a incêndio 

ou mudanças abruptas na demanda dos consumidores. O trabalho de Peng et al. (2024) evidencia a 

necessidade dessa distinção ao aplicar um pré-processamento nos dados coletados antes da sua 

avaliação pelo modelo. 

Generalização e Transferibilidade: Um modelo treinado para uma determinada região pode não 

funcionar bem em outra devido às suas características diferentes, exigindo retreinamento ou o 

desenvolvimento de técnicas de aprendizado por transferência. 

4. ANÁLISE COMPARATIVA DA EFICIÊNCIA DOS MÉTODOS 

A avaliação da eficiência dos diferentes métodos de detecção de vazamentos é complexa, pois 

os artigos analisados utilizam diferentes métricas (taxa de detecção, taxa de falsos alarmes, erro de 

localização, tempo computacional), estudos de caso (reais ou sintéticas) e condições de vazamento 

(único ou múltiplo, tamanhos variados). Portanto, uma comparação quantitativa direta é impraticável. 

No entanto, é possível realizar uma análise qualitativa e comparativa dos principais aspectos positivos 

e negativos em cada abordagem. 

As abordagens orientadas a dados, em particular as de deep learning, possuem como aspectos 

positivos as maiores taxas de sucesso na detecção dos vazamentos. Wang et al. (2020) alcançaram 

uma taxa de precisão de detecção de 99,8% com uma taxa de falsos positivos de apenas 0,14% usando 

o método de deep learning RNC. Zhou et al. (2019) demonstraram que RNC podem atingir alta 

precisão na localização de vazamentos em redes reais, atingindo uma precisão de 98,38%.  

As RNC são consistentemente mais eficientes na aprendizagem e interpretação de sinais 

acústicos. Peng et al. (2024) demonstraram que seu modelo de RNC superou algoritmos como 

Random Forest e XGBoost, especialmente em ambientes ruidosos (diurnos), após um pré-

processamento para criar espectrogramas. Liu et al. (2024) também confirmam a alta performance de 

LSTM para análise de características acústicas. O ponto positivo é o desempenho de ponta e a 

capacidade de aprender padrões complexos diretamente dos dados, contornando a necessidade de 

uma calibração física perfeita. O negativo é a alta demanda por dados e poder computacional. 

Em relação aos aspectos negativos, pode-se citar que a eficiência dos modelos é totalmente 

dependente da qualidade e quantidade de dados. Uma parcela significativa dos estudos utiliza dados 

sintéticos gerados por simuladores (Basnet et al., 2023; Marvin et al., 2023), pois dados de 

vazamentos reais são escassos e muitas vezes imprecisos. Isso cria um risco: um modelo treinado em 

dados simulados pode não generalizar bem para a rede real. Liu et al. (2024) abordam esse ponto 

negativo ao usar LSTM-GAN para gerar dados sintéticos mais realistas, melhorando o desempenho, 

mas a dependência de dados continua sendo a maior desvantagem desses métodos. 
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5. PERSPECTIVAS FUTURAS E DIREÇÕES DE PESQUISA 

As pesquisas na área de IA estão evoluindo rapidamente, com a crescente demanda por soluções 

que sejam capazes de solucionar problemas complexos nos mais diversos campos de aplicação. Em 

particular, as tendências futuras de gestão de perdas apontam para a implantação de sensores de vazão 

e pressão e de medidores e componentes das redes inteligentes, impulsionando o monitoramento em 

tempo real dos sistemas de distribuição. Assim, modelos que utilizam esses dados poderiam ser 

aplicados para detecção instantânea de anomalias, tais como vazamentos e para otimização proativa 

da operação das redes (Cassidy et al., 2021). A replicação de um objeto ou de sistemas físicos em 

domínio virtual é denominada de Gêmeos Digitais. 

Além dos gêmeos digitais, a utilização de robôs autônomos para inspeção das redes e 

consequentemente a coleta de dados ponto a ponto também representa uma técnica promissora. Estes 

robôs, quando inseridos nas redes de distribuição, geram dados que, quando analisados por algoritmos 

de IA possibilitam inspeções contínuas em tempo real, além de determinar a localização precisa de 

vazamentos muito pequenos. Robos com IA são capazes de atuar de modo preventivo para que os 

vazamentos não se tornem grandes problemas no futuro (Awwad et al., 2023; Qi et al., 2024). 

No contexto do desenvolvimento computacional, as perspectivas apontam para o 

desenvolvimento de técnicas de aprendizado supervisionado mais assertivas na localização de 

múltiplos vazamentos, por exemplo, pequenos vazamentos que ocorrem simultaneamente e próximos 

uns aos outros (Li et al., 2021; Doss et al., 2023). Essa capacidade assertiva dos modelos está 

intrinsicamente ligada à qualidade dos dados para treinamento e aprendizagem dos padrões de 

vazamentos. A fim de solucionar os problemas da escassez de dados e da privacidade de informações 

operacionais, várias concessionárias poderiam treinar um modelo global robusto sem compartilhar 

seus dados brutos, melhorando a precisão dos modelos de forma conjunta. Essa metodologia é 

conhecida como aprendizado federado (Moubayed et al., 2021). 

Uma potencial combinação entre IA, o uso de robôs, gêmeos digitais e aprendizado federado 

poderia gerar as chamadas cidades inteligentes, as quais seriam capazes de otimizar tanto a 

distribuição quanto o gerenciamento das perdas de forma contínua e assertiva. 

6. CONCLUSÃO 

A aplicação de Inteligência Artificial na detecção e localização de perdas reais de água vêm 

ganhando cada vez mais espaço em um cenário de escassez de recursos naturais. A transição na 

utilização de métodos manuais e tradicionais para novas tecnologias, tanto de equipamentos como 

ferramentas computacionais está em andamento. A literatura da última década evidencia esta 

evolução tecnológica no gerenciamento dos sistemas de abastecimento com o desenvolvimento e 

aplicação de abordagens mais sofisticadas, como a utilização de sensores inteligentes, a modelagem 

com aprendizagem de máquinas e, mais recentemente, o deep learning. 

As abordagens orientadas a dados, especialmente as que utilizam deep learning, demonstraram 

uma capacidade notável de analisar dados complexos de múltiplos sensores (pressão, vazão, acústica) 

para identificar vazamentos com alta precisão. Técnicas como o uso de GANs para aumentar 

conjuntos de dados e a combinação de modelos físicos com IA em abordagens híbridas estão 

superando algumas das barreiras mais persistentes, como a escassez de dados e a incerteza dos 

modelos. 

No entanto, há alguns desafios a serem superados, tais como a qualidade dos dados, a 

complexidade das redes e a necessidade de modelos mais robustos e realistas. O futuro aponta para 

sistemas ainda mais integrados, onde gêmeos digitais, robótica e aprendizagem federada trabalharão 
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 em conjunto para criar modelos mais eficientes e gerenciáveis, aumentando a interseção entre 

tecnologia e sustentabilidade em sistemas de distribuição de água.  
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