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Abstract: Over the past two decades, artificial neural networks have become a valuable tool for 
addressing complex challenges in water resources management. They are applicable in situations 
where traditional methods struggle to grasp the intricacies of the issues involved. This study 
highlights various applications of these tools, presenting their capability to capture nonlinear 
relationships in hydrology. It includes examples ranging from basic flow predictions to the dynamics 
of sediment in reservoirs. A search of the Scopus database exhibited more than 56,000 publications 
on artificial neural networks over the past two decades, with over 50,000 of these published in just 
the last ten years. This significant volume of scientific output is due to the unique advantages of 
artificial neural networks, including their adaptability to various scenarios and their capability to 
process information in real-time. Additionally, this study highlights the application of these tools in 
recent real-world situations, such as managing extreme events and monitoring water quality. These 
results attest to the effectiveness of these techniques in the field of water resources management. 
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Resumo: Nas últimas duas décadas, as redes neurais a rt ifici ai s surgiram como fe rramenta promi ssora 
para lidar com d esafios multifacetados como a gestão de recursos hídricos, espe cialm ente em 
sit uaç õe s em que os métodos convencionais se mostram insuficientes para descrever com sucesso a 
complexidade dos problemas. Este estudo apresenta exemplos do uso diversificado dessas 
ferramentas e a sua capacidade para capturar relações não lineares em hidrologia, exemplificando 
desde previsões mais simples de vazão, até a dinâmica de sedimentos em reservatórios. Uma pesquisa 
realizada na base de dados Scopus apontou a existência de mais de cinquenta e seis mil pu blicações 
sobre  o assunto nas últi mas duas d écadas, sendo que  mais de cinquenta mil apenas nos últimos dez 
ano s.   O volume da produção científica associado ao tema está associado às vantagens peculiares das 
redes neurais artificiais, como a ad aptabi lidade a diferentes cenári os e a habilidad e de processar 
informação em  tempo real. Este estudo tam bém aponta o uso da ferramenta em ca sos r ea is recentes, 
incluindo o gerenciamento de eventos extremos e o monitoramento da qualidade da água, ilustrando 
a capacidade dessas técnicas em relação à gestão de recursos hídricos. 
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INTRODUÇÃO 
 

As redes neurais artificiais (RNAs) têm sido aplicadas para a solução de problemas de difícil 
previsão, como os relacionados aos recursos hídricos, em que as conexões entre as variáveis não são 
completamente conhecidas. Entretanto, para que modelos baseados em RNAs forneçam predições 
precisas, é crucial atender a certos requisitos. De acordo com Baker e colaboradores (2018), isso 
inclui a disponibilidade de grande volume de dados ou intensa interação entre a RNA e o ambiente, 
escolha do algoritmo correto e definição das entradas e saídas de interesse. 

Uma rede neural consiste tipicamente em unidades de processamento ou neurônios, simples e 
conectadas, que produzem uma sequência de ativações. Os neurônios de entrada são ativados por um 
estímulo e, por sua vez, ativam outros neurônios por meio de conexões ponderadas, ditas peso 
sináptico (Schmidhuber, 2015). A função aditiva é necessária para somar os sinais de entrada, 
ponderados pelas sinapses dos neurônios. As funções de ativação são, por associação, os sinais 
eletroquímicos recebidos e transmitidos pelo neurônio. Assim, a função de ativação define a resposta 
de saída de um neurônio ou a forma como um estímulo é respondido. Os formatos das funções que 
podem ser atribuídas podem ser linear ou sigmóide (Haykin, 2001; Munakata, 2008). 

Os tipos mais comuns de configuração de rede são aqueles alimentados adiante, ou feedforward, 
com uma ou múltiplas camadas. Neste caso, os neurônios são organizados em uma ou mais camadas 
com os dados organizados unidirecionalmente entre eles. De forma geral, as redes alimentadas adiante 
são estáticas, isto é, produzem apenas um conjunto de valores de saída. Por sua vez, as redes 
recorrentes, ou de feedback, constituem sistemas dinâmicos. Neste caso, quando um novo padrão de 
entrada é apresentado, as saídas do neurônio são computadas e, devido à retroalimentação, as entradas 
para cada neurônio são modificadas (Jain, 1996). 

Os primeiros a propor um modelo matemático para a construção de redes neurais foram Warren 
McCullough e Walter Pitts, em 1943. No entanto, foi apenas com o aprimoramento da computação 
eletrônica e o desenvolvimento matemático dos trabalhos de Hopfield (1982) e Rumelhart et al. 
(1986) que surgiu a possibilidade de buscar aplicação desta ferramenta computacional além do campo 
teórico. 

Semelhante ao sistema nervoso central humano, o princípio das redes neurais proposto por 
McCullough e Pitts seria um neurônio artificial, que imita a plasticidade do pensamento humano, 
principalmente o processo de aprendizado por experiência. De acordo com Haykin (2001) a rede 
neural seria o equivalente a uma ferramenta concebida para modelar a maneira como o cérebro realiza 
uma tarefa de interesse. Os neurônios artificiais seriam unidades de processamento que recebem um 
estímulo, ou dados de entrada e produzem uma resposta, ou dados de saída. Quanto maior o número 
de neurônios ligados para formar uma rede, melhor será o resultado potencial para decisões 
complexas. Em 1958, Rosenblat concebeu o perceptron, a rede neural mais antiga com apenas um 
neurônio conforme apresentado na Figura 1. 

A arquitetura da rede neural é o padrão de conexão entre os neurônios (Munakata, 2008). 
Diferentes arquiteturas de redes neurais requerem técnicas, paradigmas e algoritmos de aprendizado 
apropriados. A arquitetura do sistema é elaborada de acordo com as características do resultado que 
se pretende obter sendo possível diversos arranjos de redes neurais. 

Haykin (2001) propôs um conceito de aprendizagem de redes neurais como o processo pelo 
qual parâmetros livres de uma rede neural são adaptados por meio de um processo de estímulo do 
ambiente no qual a rede está inserida, e que o tipo de aprendizagem é determinado pela maneira pela 
qual a modificação dos parâmetros ocorre. Um conjunto preestabelecido de regras para a solução de 
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um problema de aprendizagem é denominado algoritmo de aprendizagem. Enquanto a forma do 
modelo do ambiente na qual a rede neural opera refere-se ao paradigma de aprendizagem, isto é, 
supervisionado, não supervisionado ou híbrido.  

 
Figura 1 – Representação esquemática de um neurônio 

  

Nota: xn = dados de entrada; wn = pesos sinápticos; B = bias; f () = função de ativação; y = dados de saída 

 
De acordo com Jain (1996), na modalidade supervisionada, ou aprendizado com um 

“professor”, a rede recebe uma resposta ou saída correta para cada padrão de entrada. 
Subsequentemente, pesos sinápticos são determinados para que a rede produza respostas o mais 
próximas possível das respostas corretas conhecidas e recebidas pela rede. A modalidade por reforço 
é uma variante do aprendizado supervisionado, na qual a rede recebe apenas uma crítica sobre a 
acurácia das saídas, não as respostas corretas em si. Por outro lado, o aprendizado não supervisionado 
ou “sem professor” não requer uma resposta correta associada a cada entrada no conjunto de dados 
de treinamento. Esta modalidade explora a estrutura subjacente dos dados ou as correlações entre os 
padrões dos dados e os organiza em categorias a partir das correlações. Por sua vez, o aprendizado 
híbrido combina o supervisionado e o não supervisionado. Parte dos pesos sinápticos são 
normalmente determinados por meio de aprendizado supervisionado, enquanto os demais são obtidos 
por meio não supervisionado. A quantidade de pesos é determinada em função do número de 
neurônios nas camadas de entrada e saída e do número de neurônios nas camadas intermediárias. O 
número de neurônios nas camadas de entrada e saída dependem do problema a ser resolvido.  

Os processos utilizados no processo de aprendizagem são derivados de técnicas de otimização, 
que podem conter critérios objetivos para estabelecer o número de camadas intermediárias e o número 
de neurônios nestas camadas. Portanto, é um problema em aberto. Em geral, são utilizadas técnicas 
de computação evolutiva e metaheurísticas, isto é, algoritmo genético, colônia de formigas, busca 
Tabu, recozimento simulado, entre outros. 
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O USO DE REDES NEURAIS APLICADAS AOS RECURSOS HÍDRICOS 
 

O interesse científico para a aplicação de redes neurais aos recursos hídricos motivou o início 
de trabalhos de previsão do volume de lodo de esgoto (Capodaglio et al., 1991), da qualidade da água 
(Maier e Dandy, 1993), da vazão (Zhu e Fujita, 1993, Lachtermacher e Fuller, 1993), do transporte 
de sedimentos (Trent et al., 1993) e, também, do escoamento em eventos de precipitação (Hsu et al., 
1995; Shamseldin, 1997; Tokar e Johnson, 1999); além da estimativa de hidrograma unitário 
(Hjelmfelt et al., 1993). Tais aplicações ainda são praticadas e se expandem em outras aplicações com 
estudos relacionados à hidrologia e à qualidade da água.  

Nas últimas duas décadas, têm apresentado progresso para a previsão e modelagem não linear, 
isto é, com capacidade para representar a não linearidade da aplicação hidrológica (Maier et al., 2010; 
Yaseen et al., 2015). Na base de dados Scopus, por exemplo, para a busca "rede neural artificial + 
recursos hídricos", o número de artigos listados nos últimos 20 anos ultrapassa 56 mil, com mais de 
50 mil apenas na última década. Na Tabela 1, são apresentados alguns exemplos de aplicações de 
RNAs em recursos hídricos nos últimos dez anos. 

 

Tabela 1 – Exemplos de RNAs no campo de recursos hídricos nos últimos dez anos 

Autor(es) Aplicação Método Comentários 

Hsu (2015) 

Controle de cheias em 
tempo real em 

reservatórios durante 
tufões 

ANFIS (Adaptive 
Neuro-Fuzzy 

Inference System) e 
RTRLNN (Real-
Time Recurrent 
Learning Neural 

Network) 

Utiliza variáveis 
hidrológicas como 
dados de entrada 

Gazendam (2016) 
Avaliação de habitats 

aquáticos para projetos 
de restauração 

RNA 
Modelo com 112 

locais e 31 variáveis 
de entrada 

Huang (2017) 
Sedimentação em 

reservatórios 
ANFIS e RTRLNN 

ANFIS simulou 
hidrogramas com 

eficácia e RTRLNN 
mostrou bom 

desempenho em 
regimes de fluxo 

dominados por carga 
de fundo 
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Continuação Tabela 1 

Zhang (2018) 

Simulação e previsão de 
níveis em estruturas de 
transbordo de esgoto 

combinado 

MLP (Multilayer 
Perceptron), WNN 
(Wavelet Neural 
Network), LSTM 
(Long Short-Term 
Memory) e GRU 
(Gated Recurrent 

Unit) 

Uso de inteligência 
artificial integrada à 
Internet das Coisas 

Zhang (2019) 

Previsão de desempenho 
em estações de 

tratamento de água 
potável 

HANN (Hybrid 
Artificial Neural 
Network) e AG 

(Algoritmo Genético) 

Combinação de 
parâmetros de 

qualidade da água e 
operacionais 

Li (2020) 

Ocorrência de 
hidrocarbonetos 

policíclicos aromáticos 
em material particulado 

suspenso aquático 

SOM (Self-
Organizing Map) e 

PMF (Positive Matrix 
Factorization) 

 
Dados de 

monitoramento de 
20 anos 

 

Fang (2021) 
Desempenho de biofiltros 

em águas pluviais 

RNA + 2 outras 
técnicas de 

aprendizado de 
máquina 

Redução de riscos à 
saúde associados a 
metais pesados em 

águas pluviais com a 
utilização de 

biofiltros 

Lai (2022) 
Impacto das mudanças 

climáticas em 
reservatórios 

RNA e SVR (Support 
Vector Regression) 

Uso de precipitação, 
temperatura e 

radiação solar como 
parâmetros de entrada 

Zhu (2022) 
Gestão de reservatórios 

em cascata 
Três tipos de IA: R2, 

RMSE e STD 
Simulações de 

cenários hidrológicos 

Li (2023) 

Identificação de fontes 
potenciais de substâncias 

perfluoroalquiladas 
(PFAS) em corpos 

hídricos 

PMF e SOM 

812 amostras de água 
superficial de seis 

estações de 
monitoramento 

Song (2023) 
Contaminação de águas 

subterrâneas 

MC3D-CNN (3D 
Convolutional Neural 

Network) 

Acurácia >90% na 
classificação de 

poços de extração e 
>80% na previsão de 

locais ótimos para 
novos poços 
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Continuação Tabela 1 

Hou (2024) 
Análise de tendências 
espaço-temporais de 

coliformes fecais 

SARIMA (Seasonal 
ARIMA) e RNA 

Uso de modelo 
baseado em processos 

para gerar dados de 
treinamento 

Busari (2024) 
Previsão de clorofila-a 

como indicador de 
florações algas nocivas 

LSTM 

Integração com 
sensores em tempo 
real e Internet das 

Coisas (IoT) 

Koundal (2025) 
Remoção de arsênio em 

água potável 
RNA 

Otimização de 
membranas de filtro 

passivo 

Das (2025)  Avaliação da qualidade 
da água 

 

RNA 

Aplicação combinada 
de CILOS, SIG, 

RNA e técnicas de 
decisão 

 

O crescente número de aplicações de RNAs no campo dos recursos hídricos pode ser atribuído 
à maior capacidade de resolução de problemas em comparação com métodos lineares, como aqueles 
baseados em regressão múltipla, por exemplo. As RNAs são capazes de modelar funções mais 
complexas com maior precisão (Yang, 2023). Além disso, uma RNA pode revelar relações e padrões 
ocultos nos dados que, mesmo em bacias hidrográficas extensivamente estudadas, os modelos 
baseados em processos físicos podem não considerar todos os fatores condicionantes subjacentes (Li, 
2022; Song, 2023). Outra vantagem é a rapidez de resposta em que, muitas vezes, após a 
implementação do modelo decisões podem ser tomadas com base em dados em tempo real (Zhu, 
2022). 

 
CONCLUSÃO 
 

As aplicações das RNAs, conforme apresentado, destacam o seu papel na solução de problemas 
complexos em recursos hídricos, superando, muitas vezes, limitações de métodos lineares e modelos 
físicos tradicionais. Seja na previsão de cheias ou na otimização da operação de estações de 
tratamento de água estas ferramentas têm se mostrado efetivas para extrair relações não lineares de 
grandes volumes de dados em associação à rapidez de resposta em tempo real. A adaptação a 
diferentes soluções de problemas e cenários decorre principalmente da diversidade de arquiteturas, 
algoritmos e paradigmas de aprendizado.  

Como tendência, observa-se o uso integrado de RNAs com tecnologias emergentes como IoT 
(Internet of Things) outros tipos de inteligência artificial, por exemplo, Algoritmos Genéticos, entre 
outras e, ainda, o uso acoplado a modelos determinísticos tradicionais. Seu uso aponta ainda 
aplicações promissoras na otimização de decisões em cenários de mudanças climáticas e escassez 
hídrica. 

Entretanto, faz-se necessário reconhecer as limitações e obstáculos para o uso das RNAs, a citar 
a necessidade de dados robustos para treinamento e a denominada "caixa preta" dos algoritmos mais 
complexos, que desafiam a interpretação dos resultados.  
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Cabe salientar que o uso potencial das RNAs demanda investimento não apenas em relação à 
técnica propriamente dita, mas, em especial na formação de profissionais qualificados para integrar 
o conhecimento clássico já adquirido pela hidrologia com a abordagem inovadora das inteligências 
artificiais visando à segurança hídrica e à sustentabilidade do uso da água.  
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