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INTRODUÇÃO 

O risco de inundações tem aumentado em escala global devido às mudanças climáticas e à 

urbanização acelerada (Miller & Hutchins, 2017; IPCC, 2021). Eventos extremos de precipitação 

mais frequentes, combinados com a crescente impermeabilização do solo, tornam a implementação 

de sistema de alerta de inundação eficazes uma prioridade. Assim, espera que esses sistemas sejam 

concebidos a partir de abordagens rápidas, eficazes e de baixo custo, como por exemplo combinando 

o aprendizado de máquina (ML) com princípios hidrológicos para lidar a complexidade dos processos 

físicos desses eventos (Schanze, 2006; Plate, 2002). 

O presente trabalho apresenta uma estrutura de priorização de rede de monitoramento, baseada 

em três etapas: (i) modelagem preditiva com redes neurais Perceptron Multicamadas (MLP), (ii) uso 

de algoritmo de deterioração de séries temporais para simular falhas de sensores, e (iii) aplicação de 

inteligência artificial explicável (XAI) para interpretar e validar resultados. A área de estudo é a Bacia 

do Rio Piracicaba (SP), monitorada por uma rede de 16 estações pluviométricas e fluviométricas. 

METODOLOGIA 

A modelagem foi realizada a partir da estrutura de rede neural  MLP, treinada com dados de 

2016 a 2022 (resolução de 10 minutos), para horizontes de previsão de 3 e 24 horas (WMO, 2015), 

para previsão de nível de água na cidade de Piracicaba (SP). A rede foi alimentada com dados 

históricos de chuva e nível das estações da rede, e os resultados avaliados com base na eficiência de 

Nash-Sutcliffe (Nash & Sutcliffe, 1970). Os hiperparâmetros foram ajustados por grid search, e 
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 utilizou-se o otimizador Adam (Kingma & Ba, 2014) com parada antecipada e regularização por 

dropout. 

Para avaliar a resiliência do sistema frente à falhas dos sensores, desenvolveu-se um algoritmo 

de deterioração de séries temporais, que substitui partes dos dados por zeros, simulando falhas nos 

sensores. As deteriorações foram aplicadas separadamente por estação e sazonalmente (estação 

chuvosa, seca ou ano todo). Complementarmente, a interpretabilidade do modelo foi explorada com 

a técnica SHAP (SHapley Additive exPlanations), proposta por Lundberg e Lee (2017), que 

quantifica a contribuição de cada variável de entrada (estações) para a previsão. Essa abordagem 

permitiu identificar estações críticas para diferentes horizontes de previsão e comparar os resultados 

com os obtidos nos cenários de deterioração. 

RESULTADOS 

A acurácia das previsões caiu com a deterioração dos dados, evidenciando as estações críticas 

para cada horizonte de previsão. Para previsões de curto prazo, a estação 713 foi a mais relevante por 

estar próxima ao ponto de interesse, enquanto para previsões de longo prazo passam a depender 

também de estações a montante, como a 55, resultado que se alinha com o conceito de tempos de 

propagação das cheias na bacia. 

A análise SHAP confirmou essas observações ao indicar as mesmas estações como influentes 

para a previsão, indicando que as abordagens de explicabilidade e deterioração são coerentes entre si. 

Um modelo otimizado com apenas as cinco estações mais importantes se mostrou mais sensível à 

perda de informações, evidenciando a importância de uma rede diversificada para garantir resiliência 

em condições reais. 

CONCLUSÕES 

Este estudo apresenta como a integração entre aprendizado de máquina, análise de robustez via 

deterioração de dados e inteligência artificial explicável pode auxiliar a concepção de sistemas de 

alerta de inundação mais eficientes, transparentes e hidrologicamente coerentes. A análise conjunta 

dos impactos da deterioração e dos valores SHAP permitiu identificar os sensores mais importantes 

para as previsões. Identificou-se que, embora seja possível reduzir a rede de monitoramento mantendo 

a performance do modelo, essa simplificação compromete a resiliência do sistema diante de falhas 

ou perda de dados. A estrutura proposta oferece suporte à tomada de decisão para otimização de redes 

de monitoramento, indicando quais estações devem ser priorizadas em manutenção e investimentos. 
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