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Abstract: Given the increasing complexity of Water Distribution Networks (WDNs) and the 
limitations presented in conceptual models, such as computational cost and limited network 
knowledge, alternative computational modeling approaches emerge, aiming to monitor this resource 
in a timely manner. This work presents a metamodel based on Physics-Informed Neural Networks 
(PINNs) developed for this purpose, generalizing the network's behavior through patterns 
encapsulated in the data, like a common metamodel, but also enhancing its pressure and flow 
estimation capabilities by internalizing the physical concepts that govern these phenomena, based on 
the mass and energy conservation equations. The optimal model configuration was studied by 
comparing the results of different database sizes, sensor configurations, and the influence of the 
physics-informed portion, using the Modena – Italy network for tests. Once the optimal configuration 
was defined, a failure simulation study was also conducted on the sensors that provide the model's 
inputs, mapping the impact on its functionality. Results proved to be more satisfactory when both 
learning approaches work equally, demonstrating the benefits of the adopted physical approach. The 
model's pressure predictions were very sensitive to sensor failure scenarios, considerably decreasing 
their accuracy. In contrast, this same behavior was not repeated for the flow predictions 
 
Resumo: Frente ao aumento da complexidade das Redes de distribuição de água (RDAs) e as 
limitações apresentadas em modelos conceituais, como custo computacional e conhecimento limitado 
da rede, modelagens computacionais alternativas surgem, objetivando monitorar em tempo hábil esse 
recurso. O trabalho apresenta um metamodelo baseado em Redes Neurais Fisicamente Informadas 
(PINNs) desenvolvido para esse fim, generalizando o comportamento da rede por meio dos padrões 
encapsulados nos dados, como um metamodelo comum, mas também aumentando suas capacidades 
de estimativa de pressão e vazão internalizando os conceitos físicos que regem esses fenômenos, com 
base nas equações de conservação de massa e energia. A configuração ótima do modelo foi estudada 
comparando os resultados de diferentes tamanhos de banco de dados, configurações de sensores e 
influência da porção fisicamente informada utilizando a rede Modena – Itália em testes. Definida a 
configuração ótima, realiza-se também um estudo de simulação de falhas nos sensores que fornecem 
as entradas do modelo, mapeando o impacto no funcionamento do modelo. Resultados demonstram-
se mais satisfatórios quando ambos os aprendizados trabalham igualmente, demonstrando os 
benefícios da abordagem física adotada. As predições de pressão do modelo apresentaram-se muito 
sensíveis a cenários de falha nos sensores, diminuindo consideravelmente a sua precisão. Em 
contraponto, esse mesmo comportamento não se repetiu para as predições de vazão. 
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INTRODUÇÃO 

 Redes de distribuição de água (RDAs) são infraestruturas fundamentais no meio urbano que 
objetivam fornecer uma distribuição eficiente e segura de água para a população. Visto a importância 
da água para a vida e que o crescimento das redes de distribuição acompanha o desenvolvimento 
urbano, resultando em redes cada vez maiores e mais complexas, tornou-se desafiador monitorar esse 
recurso de maneira mais precisa e em tempo hábil.  

Até o presente, a utilização de modelos conceituais para estimar o estado das RDAs continua 
sendo predominante e apresentando avanços. Porém, limitações quanto ao recurso computacional 
necessário para a execução [Broad (2012)], à calibração de parâmetros da rede [Lima (2018)], em 
conjunto com o conhecimento limitado das redes estudadas, estimularam modelos alternativos a 
serem desenvolvidos. 

Tendo esse contexto em mente, emerge a metamodelagem hidráulica como uma abordagem 
aplicável na solução das limitações apresentadas. Um metamodelo é uma técnica de modelagem 
computacional em que algoritmos de mapeamento de espaços hiper-dimensionais aproximam padrões 
encapsulados nos dados de medição e metadados fornecidos, assim sendo capaz de generalizar o 
comportamento de uma RDA. Essa abordagem já vem sendo aplicada, como é o caso [Broad (2012)], 
que utiliza essa técnica para estimar vazão e decaimento de cloro em um sistema de distribuição de 
água (SDA). 

O Metamodelo apresentado neste trabalho baseia-se em uma MLP (Multi-Layer Perceptrons) 
que objetiva estimar os valores de pressão e vazão nos nós e tubulações de uma RDA, 
respectivamente, utilizando como as entradas do modelo valores de vazões e pressões obtidas em 
sensores que monitoram determinados elementos da rede. Além disso, como forma de melhorar ainda 
mais as predições, introduz-se a abordagem de redes neurais fisicamente informadas (PINNs, do 
inglês Physics-Informed Neural Network), que adicionam os princípios físicos ao processo de 
aprendizado, permitindo que o modelo também internalize os fenômenos físicos que envolvem os 
padrões identificados pelo metamodelo.  

 Uma vez que o modelo é completamente dependente das informações monitoradas para o seu 
funcionamento, espera-se que a falta de acesso a um ou mais sensores acarrete perda de precisão, uma 
vez que o metamodelo não funcionará em suas condições estabelecidas no desenvolvimento. Tendo 
esse cenário em mente, é conduzido também um estudo de simulação de falhas nos sensores utilizados 
como entradas do modelo, sendo possível definir o comportamento do modelo e seus impactos frente 
a um cenário onde nem todos os sensores fornecem as informações necessárias. O estudo é conduzido 
informando como 0 o valor no sensor a ser falhado, realizando esse procedimento para todos os 
sensores individualmente com a finalidade de determinar se há sensores que causam maior impacto 
na precisão dos resultados e seus motivos para tal. 

 
METODOLOGIA 

 A PINN desenvolvida funciona em duas etapas, a primeira consiste no processo de 
treinamento, onde a rede neural assimila o comportamento da RDA através dos padrões encontrados 
no banco de dados e, através das equações de conservação de massa e energia, as quais captam os 
fenômenos físicos envolvidos no processo. A partir desse treinamento, a segunda etapa é o momento 
em que o modelo realiza as estimativas, com base em informações de nós e tubulações monitoradas 
por sensores. Os códigos desenvolvidos neste trabalho foram escritos na linguagem Python, com o 
auxílio da biblioteca PyTorch [Rozemberczkir (2021)] para o algoritmo de aprendizado de máquina. 
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 Na etapa de treinamento, uma função de perda acerca dos padrões identificados e dos 
fenômenos físicos são definidos pelas equações (1) e (2) respectivamente:  
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sendo N o número de nós não-monitorados, 𝑃௡ a pressão estimada pelo modelo, 𝑃෠௡a pressão simulada 
conhecida para o mesmo nó n e 𝜇௣ a pressão média das pressões não-monitoradas. O mesmo 
raciocínio é aplicado para a vazão Q na mesma equação. 

 O treinamento da rede neural funciona como um modelo baseado em dados comum, 
otimizando os pesos das conexões entre os neurônios da rede neural para melhor assimilação dos 
padrões encapsulados nos dados pela rede neural, assim tornando possível estimar as saídas de acordo 
com as entradas. A adição da abordagem física nessa etapa garante a conformidade com a realidade 
nas predições do modelo, evitando que estimativas sem sentido físico sejam retornadas. A função 
perda do aprendizado físico é mensurada através dos pesos 𝑟ଵ e 𝑟ଶ, que adaptam as equações de 
conservação de energia e massa, respectivamente para o contexto do modelo. 

 Para controlar a influência do erro associado aos dados e à porção fisicamente informada, 
define-se então uma função de perda global (3), que realiza a soma de ambas as funções-perda 
multiplicada aos respectivos pesos associados a cada função.  

𝑙௚௟௢௕௔௟ =  𝑙ௗ௔ௗ௢௦  ∙ 𝑤ଵ +  𝑙௙í௦௜௖௔  ∙ 𝑤ଶ                                                                                                                  (3) 

 A avaliação do modelo é realizada em termos do coeficiente de determinação (𝑅ଶ) (6) e o erro 
absoluto médio (7): 
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sendo 𝑦௜,௫ o valor real de pressão ou vazão na amostra i no elemento x, ŷ௜,௫ o valor estimado e ȳ a 
média dos valores conhecidos. 

Essas métricas são utilizadas na definição das características do modelo, como número de 
camadas e número de neurônios. Além disso, guiam também um estudo de falhas nos sensores, sendo 
possível avaliar os impactos no modelo em caso de falha em um dos sensores que fornece as entradas 
para o seu funcionamento. 

O metamodelo utiliza tanto em seu treinamento quanto em sua validação um banco de dados 
composto de simulações hidráulicas realizados pelo software EPANET, fornecendo valores horários 
em um período de dois anos, sendo o primeiro ano utilizado na validação do modelo e o segundo em 
seu treinamento. A demanda em cada nó varia aleatoriamente entre 50% e 150%, [Andrea (2025)] 
conferindo uma incerteza que melhora a assimilação do modelo quanto ao comportamento da RDA. 
 
RESULTADOS 

 A RDA de referência deste estudo foi a de Modena – Itália, uma rede já utilizada anteriormente 
em aplicações de metamodelagem composta por 268 nós e 317 tubulações. As configurações de 
sensores utilizadas nos testes do modelo, onde P indica o número de sensores de pressão e F de vazão, 
foram: 5P+4F, 10P+6F, 15P+8F, 20P+10F, aliados a um banco de dados composto por 50.000 
amostras geradas por simulações hidráulicas. O objetivo do estudo é definir uma configuração ótima 
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de sensores e um tamanho ideal para esse banco de dados onde o modelo atinja os melhores 
resultados, indicados pelas métricas de erro (4) e (5). 

 Primeiramente, estudou-se a influência do tamanho do banco de dados na performance do 
modelo. Os resultados obtidos para diferentes tamanhos estão dispostos na tabela 1, considerando 
neste estudo a configuração 5P+4F. Os erros são calculados separadamente para pressão (P), vazão 
(Q) e ambos, assim podendo se ter uma análise mais abrangente da distribuição dos erros. 

Tabela 1 – Efeito do tamanho do banco de dados na performance do modelo. 

Quantidade Camadas Neurônios MAPE 
(P) 

NSE 
(P) 

MAPE 
(Q) 

NSE 
(Q) 

MAPE 
(P,Q) 

10.000 4 512 2,48% 0,828 3,41% 0,994 2,95% 

20.000 2 384 2,98% 0,859 3,20% 0,992 2,99% 
30.000 3 512 2,80% 0,753 3,25% 0,994 3,02% 
40.000 5 256 3,16% 0,764 3,64% 0,993 3,40% 

 Analisando os dados dispostos na tabela, define-se 10.000 como o melhor tamanho, tendo em 
vista a melhor métrica geral de erro MAPE(P, Q) (2,95%). A performance mais adequada ser do 
menor tamanho se deve a diferentes fontes de erros que bancos de dados maiores podem oferecer, 
como redundância em dados, que não necessariamente melhora a capacidade do modelo e sua 
habilidade de generalizar o comportamento da RDA, e um aumento na complexidade da etapa de 
treinamento, tornando insuficiente a capacidade do modelo para o fim desejado. 

Imagem 1 – Topologia da RDA Modena e posicionamento dos sensores em diferentes configurações. 

 

  Os resultados para as diferentes configurações de sensores estão dispostos na tabela 2 e suas 
respectivas posições estão representadas na imagem 1. Em geral, a mudança nas configurações de 
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sensores pouco alterou as estimativas de vazão. Porém, as estimativas de pressão apresentaram maior 
dispersão nos erros ao utilizar-se de mais sensores. Sendo assim, novamente a menor configuração 
(5P+4F) se mostrou a mais eficiente, valendo ressaltar que ainda sim diferentes configurações de 
sensores obtiveram resultados parecidos 

Tabela 2 – Efeito de diferentes configurações de sensores na performance do modelo. 

Config. 
Sensores 

Camadas Neurônios MAPE 
(P) 

NSE 
(P) 

MAPE 
(Q) 

NSE 
(Q) 

MAPE 
(P,Q) 

5P+4F 4 512 2,48% 0,828 3,41% 0,994 2,95% 
10P+6F 5 512 2,63% 0,832 3,62% 0,990 3,13% 
15P+8F 2 32 2,87% 0,689 3,19% 0,994 3,03% 
20P+10F 5 384 3,10% 0,642 3,62% 0,990 3,36% 

 Finalizando a etapa de parametrização do modelo, analisa-se então a efetividade da porção 
fisicamente informada, atribuindo arbitrariamente diferentes pesos para a equação (3). Os pesos 
atribuídos e seus respectivos efeitos estão dispostos na tabela 3. 

Tabela 3 – Influência do aprendizado físico frente a assimilação de dados. 

Pesos  MAPE NSE MAPE NSE Médio 
W1 W2 Camadas Neurônios P P Q Q MAPE R1 R2 
1 0 5 512 5,47% 0,768 4,17% 0,988 4,82% 3,03 0,84 
1 0,5 6 256 2,63% 0,829 11,58% 0,993 7,11% 3,01 0,12 
1 1 4 512 2,48% 0,828 3,41% 0,994 2,95% 2,88 0,08 
1 2 4 512 2,64% 0,829 13,07% 0,990 7,85% 3,03 0,15 
1 4 3 256 2,68% 0,828 13,07% 0,990 7,87% 3,04 0,19 
1 16 4 512 2,78% 0,816 13,07% 0,990 7,92% 3,05 0,22 
0 1 6 512 8,40% 0,001 59,60% 0,761 33,99% 3,08 0,39 

Observando os resultados da tabela 3, percebe-se que o modelo atua melhor quando ambos os 
pesos são iguais, uma vez que não há desbalanceamento nos pesos e as escalas estão normalizadas. 
Além disso, aumentar o peso físico em relação ao dos dados não resulta em uma melhora nas 
predições, demonstrando como ambos os treinamentos são igualmente cruciais para o modelo 
funcionar. 

 Definida a configuração ótima do modelo através dos estudos descritos anteriormente, realiza-
se também simulações de falha nos sensores, simulando individualmente uma falha nos nove sensores 
definidos. A tabela 4 contêm os resultados obtidos, indicando o sensor defeituoso e os resultados 
obtidos pelo modelo. Os sensores de 0 a 4 são sensores de pressão e de 5 a 8 vazão. 

Tabela 4 – Simulação de falhas nos sensores. 

sensor 0 1 2 3 4 5 6 7 8 
R² pressão 

(m) 
-18,95 -11,01 -10,64 -6,46 -5,11 -4,76 -36,47 -0,03 0,01 

R² vazão 
(L/s) 

0,99 0,99 0,99 0,99 0,99 0,99 0,31 0,99 0,99 

MAE pressão 
(m) 

18,11 14,03 13,83 11,03 9,98 8,96 19,88 3,72 2,95 
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MAE vazão 
(L/s) 

0,32 0,28 0,29 0,27 0,33 0,33 3,67 0,23 0,46 

 Observa-se que a falha em sensores de pressão resultou em um aumento significativo nas 
métricas de pressão, o que por outro lado gerou pouca alteração nas predições de vazão, que 
permanecem estáveis a valores próximos de 0,99, indicando resultados extremamente precisos ao 
passo que o R2 indica maior precisão quando tende a 1. Esses resultados são consistentes com os 
obtidos nas diferentes configurações de sensores, uma vez que a mudança na configuração dos 
sensores acarreta perda de precisão na capacidade de estimar pressão, no caso do preenchimento de 
falhas uma perda bem expressiva, enquanto para vazão esse comportamento não é observado. Além 
disso, vale ressaltar que esse comportamento é muito similar ao que ocorreu no estudo da 
configuração de sensores, onde diferentes configurações alteravam muito a pressão e pouco a vazão. 
As falhas em sensores de vazão não geraram grandes alterações, exceto para a falha no sensor 6.  
  

CONCLUSÕES 

 O modelo desenvolvido neste trabalho apresenta uma nova perspectiva quanto a modelagem 
computacional para monitoramento de RDAs, diferenciando-se dos amplamente utilizados modelos 
conceituais e de metamodelos completamente embasados em dados. A adição do entendimento físico 
no processo de treinamento garante que a máquina internalize precisamente o comportamento da 
RDA, entendendo relações hidráulicas complexas por meio de simulações. Esse fato oferece uma 
melhora significativa na eficiência computacional, interpretabilidade dos resultados, menor 
dependência da quantidade de dados e ausenta-se da necessidade de calibração frequente, uma vez 
que após treinado o modelo não realiza simulações hidráulicas, apenas utiliza-se dos dados de 
sensores monitorados em tempo real. Além disso, essa adição do aprendizado físico no treinamento 
do modelo também se demonstrou crucial na precisão do modelo, uma vez que os resultados 
apresentados para o modelo puramente embasado em dados (w2 = 0) são consideravelmente menos 
precisos do que os fisicamente informados. 

Quanto aos sensores, observa-se que independente da configuração ou da presença de falhas 
em alguns sensores de pressão o modelo permanece dispersando muito pouco quanto aos resultados 
de vazão, algo que não se repete nas predições de pressão. 
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