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Abstract: Streamflow forecasting is a widely used and essential technique for assessing the future 

availability of water resources, serving as an indicator of the consequences of unsustainable 

consumption. In this context, stochastic models—particularly suitable for data-scarce basins—offer 

effective predictive capabilities without requiring large volumes of detailed input data. Among these, 

the SARIMA and SARIMAX models were employed in this study. Both are seasonal autoregressive 

integrated moving average models; however, SARIMAX incorporates an exogenous regressor. This 

study aimed to evaluate streamflow forecasts using ARIMA-family models in a sub-basin of the 

Sepotuba River, located in the state of Mato Grosso, Brazil. One seasonal model (SARIMA) and three 

SARIMAX models—with precipitation, temperature, and both as exogenous variables—were 

developed. The models were trained using 11 years of data and tested over one year. Results indicated 

that the SARIMAX model with temperature as the exogenous variable performed best, achieving a 

Nash-Sutcliffe Efficiency (NSE) of 0.83, Kling-Gupta Efficiency (KGE) of 0.86, and Root Mean 

Square Error (RMSE) of 23.74 m³·s⁻¹ during the training period, and NSE of 0.92, KGE of 0.36, and 

RMSE of 18.58 m³·s⁻¹ during testing. These findings confirm the applicability of ARIMA-family 

models for streamflow forecasting under varying data availability, with SARIMAX, incorporating 

temperature as an exogenous variable, achieving the best performance. 

Resumo: A previsão de vazões é uma técnica amplamente utilizada e importante para a verificação 

da disponibilidade futura de recursos hídricos, sinalizando as consequências de um consumo 

predatório de tais riquezas. Neste sentido, modelos estocásticos, principalmente para bacias com 

dados escassos, oferecem capacidades preditivas eficazes sem a necessidade de grandes volumes de 

dados de entrada. Dentre estes, os modelos SARIMA e SARIMAX foram empregados neste estudo. 

Ambos são modelos sazonais, autorregressivos, integrados com média móvel, porém o SARIMAX 

possui uma variável regressora. Assim, este trabalho objetivou avaliar as previsões de vazões 

utilizando modelos da família ARIMA em uma sub-bacia do Rio Sepotuba, no estado do Mato 

Grosso. Para isso, utilizou-se de um modelo sazonal e três modelos sazonais com variáveis 

regressoras, a saber precipitação, temperatura e ambas. Utilizou-se um tempo de treino de 11 anos, e 

1 ano de teste, assim obtendo os modelos SARIMA e SARIMAX. Constatou-se que o modelo 

SARIMAX com a temperatura como variável exógena foi superior, obtendo NSE de 0,83; KGE de 

0,86; RMSE de 23,74 m³.s-1 para o período de treino e NSE de 0,92; KGE de 0,36; RMSE de 18,58 

m³.s-1 para o teste. Tais resultados confirmam a aplicabilidade dos modelos da família ARIMA para 

a previsão de vazões em condições variadas de disponibilidade de dados, sendo que o modelo 

SARIMAX, com a inclusão da temperatura como variável exógena, apresentou o melhor 

desempenho. 
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INTRODUÇÃO 

O monitoramento da vazão de corpos hídricos é imprescindível para a compreensão do 

comportamento dos rios e assim definir as condições em que eles se encontram. De acordo com o 

Relatório Mundial das Nações Unidas sobre o Desenvolvimento dos Recursos Hídricos de 2025, 

existem mais de 2 bilhões de pessoas que vivem em países com alto nível de estresse hídrico, e que 

eventos climáticos severos estão cada vez mais frequentes e significativos (UNESCO, 2025).  

A partir do acompanhamento das águas fluviais é possível obter informações sequenciais ao 

longo do tempo, o que pode ser caracterizado como uma série temporal (HYNDMAN e 

ATHANASOPOULOS, 2021). Em posse dos dados do monitoramento, é realizada a análise das 

informações para assim implementar nas configurações dos modelos e realizar projeções para os 

cursos d’água, como a vazão. O modelo ARIMA foi difundido pelo trabalho de Box e Jenkins (1976), 

no qual analisa as previsões para uma série temporal contendo ou não a estacionariedade. 

Conforme Almeida e Serra (2017) existem 2 tipos de modelos hidrológicos, a saber: modelos 

determinísticos ou conceituais, sendo aqueles que utilizam de informações e características físicas da 

bacia para determinar a vazão, ou, modelos estocásticos, aqueles que utilizam de relações hipotéticas 

entre os dados. Como exemplo respectivamente, tem-se o SWAT (Soil and Water Assessment Tool), 

usado no trabalho de Deus et al. (2020) para a previsão de vazão dos rios da bacia hidrográfica 

Tocantins-Araguaia, e o trabalho de Caminha et al. (2025) previsão de precipitação e vazão a partir 

do modelo SARIMA no Rio Caratinga, sub-bacia do Rio Doce. 

Caixeta et al. (2021) utilizaram o modelo SARIMA para a previsão de vazão em uma sub-bacia 

do Rio Paranaíba em Minas Gerais com área 7.640 km² para dados de 12 anos, obtendo uma boa 

modelagem para o período de teste, com NSE de 0,85 e para o treino -3,34 devido à estiagem no ano 

de previsão. Costa et al. (2023) compararam o modelo SARIMA e SARIMAX, sendo este último 

superior em todos os 5 períodos, a saber: treino, 3,6,9 e 12 meses de teste, em uma sub-bacia do Rio 

Paranaíba em Minas Gerais com área de 3.190,5 km² para dados de 9 anos. Já Junior et al. (2024) 

avaliaram 6 modelos hidrológicos, dentre eles o SARIMA e o SARIMAX. Ambos possuíram métricas 

válidas, principalmente nos meses de junho a agosto, no qual o SARIMAX resultou em melhor 

desempenho para uma bacia hidrográfica do reservatório da hidrelétrica de Três Marias em Minas 

Gerais com área de 52000 km², com dados de 28 anos.  

No estado do Mato Grosso se encontra a bacia do Rio Sepotuba que faz parte da Bacia do Alto 

Paraguai e é um afluente para as regiões alagadas do Pantanal. No trabalho de Silva et al. (2021), se 

demonstram expressivos processos antropomórficos visando o desenvolvimento agropecuário tais 

como supressão da vegetação nativa. Além do crescimento urbano principalmente no município de 

Tangará da Serra, a antropização ocorre ao longo de toda a bacia do Rio Sepotuba, interferindo 

diretamente na vazão do rio devido ao consumo de água na agricultura e no abastecimento público.  

Deste modo, este trabalho objetivou a avalição da previsão de vazões utilizando modelos da 

família ARIMA em uma sub-bacia do Rio Sepotuba, no estado do Mato Grosso, tão quanto, avaliar 

o desempenho da consideração de variáveis exógenas, por meio dos modelos SARIMAX.  

METODOLOGIA 

No fluxograma descrito na Figura 1, apresenta-se o procedimento para a modelagem da vazão 

empregada neste trabalho.  

 



                                                                              

XXVI Simpósio Brasileiro de Recursos Hídricos (ISSN 2318-0358) 3 

 

 

 

 

 
Figura 1 – Fluxograma Metodológico 

 

Fonte: Autores. 

Área de estudo 

O estudo foi realizado na Bacia Hidrográfica do Rio Sepotuba, tendo como exutório a estação 

fluviométrica da Serra do Tapirapuã, localizada na latitude de -14,85º, longitude de -57,77º e altitude 

de 212 m, no município de Tangará da Serra – MT. A área drenagem é de aproximadamente 5.290 

km², o que representa certa de 54% da área total da bacia do Rio Sepotuba, contendo parte 

significativa da bacia nas cidades de Tangará da Serra, Santo Afonso, Nova Marilândia, Campo Novo 

do Parecis e Diamantino, como pode ser observado na Figura 2. 

A bacia hidrográfica estudada integra a Bacia Hidrográfica do Rio Sepotuba, importante 

afluente do Rio Paraguai, pertencente à Bacia Platina. Sua área de drenagem é de aproximadamente 

9.840 km², o que representa 1% da área do estado, sendo composta pelos biomas cerrado, floresta 

amazônica e pantanal (Gamero et al., 2023). Os usos da água na bacia compreendem a dessedentação 

animal, agricultura e abastecimento urbano de 10 municípios, além da geração de energia elétrica em 

pequenas e médias hidroelétricas, principalmente. ao longo do Rio Juba (Leandro e Rocha, 2019). 

Figura 2 – Mapa da Area de Estudo da Bacia do Rio Sepotuba. 

 

Fonte: Autores (2025). 

Aquisição dos dados 
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 Os dados utilizados para modelagem da série histórica de vazões e precipitações foram obtidos 

da Agência Nacional de Águas e Saneamento Básico (ANA) por meio de sua plataforma, Hidroweb 

e os dados de temperatura foram obtidos do Instituto Nacional de Pesquisas Espaciais (INPE). As 

informações das estações estão dispostas na Tabela 1. 
Tabela 1 – Informações da Estações utilizadas. 

Código Nome Tipo de Estação Coordenadas Geográficas Altitude Início 

 Latitude Longitude 

1457000 Tapirapuã Pluviométrica -14,85 -57,77 212,00 06/1971 

66050000 Tapirapuã Fluviométrica -14,85 -57,77 212,00 06/1971 

A936 Salto do Céu Meteorológica -15,12 -58,13 300,83 01/2008 
Fonte: ANA e INPE (2025) 

Realizou-se então o pré-processamento dos dados, por meio da identificação de erros, como 

discordância de valores ou falhas para a devida correção, caso houvesse necessidade. Deste modo, 

definiu-se o período temporal para as séries compreendendo o intervalo de janeiro de 2008 a 

dezembro de 2019, totalizando 144 observações. Buscou-se também avaliar o desempenho dos 

modelos propostos para distintos modelos, a saber o SARIMA apenas com os dados da vazão, e os 

modelos SARIMAX, incluindo a precipitação e a temperatura como variáveis regressoras, e ambas 

totalizando 4 modelos. Para a criação dos modelos, os dados foram divididos em dois períodos, a 

etapa de treino abrangendo 2008 a 2018 e o tempo de teste para o ano de 2019. 

Modelo de previsão SARIMA e SARIMAX  

Depois da obtenção dos dados, utilizou-se a metodologia de Box e Jenkins (1976) para a criação 

dos modelos SARIMA e SARIMAX, sabendo que nesta metodologia existem quatro etapas, a saber: 

identificação do modelo; estimativa dos parâmetros; verificação e avaliação do modelo selecionado 

e previsão.  

Em conformidade a Bayer e Souza (2010) o modelo AR, existe quando o processo estocástico 

possui somente a parte autorregressiva, ou modelos MA, quando existe interação somente de médias 

móveis. Quando os modelos apresentam ambas as componentes, são denominados de modelos 

ARMA. Em séries não estacionárias, após o processo de diferenciação, o modelo passa a possuir a 

parte integrada I, portanto, denominado ARIMA. Quando se adiciona a sazonalidade o modelo da 

classe ARIMA podem ser estendidos para modelos da classe SARIMA.  

Em termos matemáticos o modelo ARIMA (p, d, q) é composto apenas por uma variável 

autorregressiva (p), uma variável integradora (d) e uma de média móvel (q). Já para o modelo 

SARIMA (p, d, q) (P, D, Q), sendo o mesmo determinado pela Equação 1. Um modelo SARIMA (p, 

d, q) (P,D,Q) possui as ordens de autorregressão (p, P), as ordens de diferenciação (d, D) e as ordens 

de média móvel (q, Q), sendo as variáveis (p,d,q) não sazonais, e (P,D,Q) sazonais. 

𝜙(𝐵)Φ(𝐵𝑆) (1 − 𝐵𝑆)𝐷(1 − B)d 𝑍𝑡 =  θ(B) ϴ(BS)𝜀𝑡                                            (1)  

Na Equação 1, (p,d,q) são ordens do modelo referentes à dinâmica ordinal, (P,D,Q) são ordens 

do modelo sazonal, s é a periodicidade sazonal, 𝜙(𝐵) é o polinômio autorregressivo, θ(B) é o 

polinômio de médias móveis, Φ(𝐵𝑆) é o parâmetro autorregressivo sazonal, ϴ(BS) é o parâmetro de 

médias móveis sazonais, sendo determinados pelas Equações 2 e 3. 

Φ(𝐵𝑆) =  1 −  Φ1BS  −  Φ2BS² −. . . − Φ𝑝BSp                                                     (2) 

ϴ(BS)  =  1 − ϴ1BS  −  ϴ2BS²  −. . . − ϴ𝑝BSp                                                      (3) 
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 O modelo SARIMAX compreende a aplicação de uma variável regressora (X) ao modelo, com 

a finalidade de prever com valores futuros da série temporal selecionada utilizando relações lineares 

dos valores prévios observados dos dados sequenciais, informações secundárias fornecidas pelas 

variáveis exógenas e termos de erro (Fazla et al., 2023). A sua equação típica só de diferencia da 

Equação 1, pelo acréscimo da variável regressora, representado pelo termo somatório do lado direito 

que modela a relação entre a sequência de dados observados e o vetor das informações explanatórias 

como descrito pela Equação 4.  

 𝜙(𝐵)Φ(𝐵𝑆) (1 − 𝐵𝑆)𝐷(1 − B)d Zt =  θ(B)ϴ(BS)Ɛt +  ∑ 𝛽iSt,i                  
𝑚
𝑖=1           (4) 

Todo o processo para obtenção dos modelos foi realizado em R. 

Métricas para avaliação dos modelos 

A fim de escolher os modelos preditivos de vazões mensais, aplicou-se o comando auto.arima(), 

função pertencente ao pacote forecast. Nesse comando a seleção do modelo é automatizada, com o 

objetivo de identificar o modelo ARIMA mais adequado, combinando testes de raiz unitária, 

minimização do Critério de Informação de Akaike (AIC) e estimação por máxima verossimilhança 

(MLE) (Hyndman e Athanasopoulos, 2021).  

Após a seleção do modelo, é necessário passar por uma avaliação dos dados simulados. Neste 

caso, foram utilizadas as métricas do coeficiente de Nash-Sutcliffe (NSE), o coeficiente de Kling-

Glupta (KGE) e a raíz quadrada do erro médio (RSME), como estão descritos nas Equações 5, 6 e 7, 

respectivamente. 

𝑁𝑆𝐸 =  1 − [
∑ (𝑄𝑖,𝑜𝑏𝑠−𝑄𝑖,𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑄𝑖,𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑖=1

]                                                                                                     (5) 

Em que: n é o número de observações, 𝑄𝑖,𝑜𝑏𝑠 é a vazão observada no mês, 𝑄𝑖,𝑠𝑖𝑚é a vazão 

simulada e 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  é a vazão média observada no período, todas as vazões em m³.s-1, de modo que NSE 

seja um parâmetro adimensional.  

𝐾𝐺𝐸 =  1 − √(𝑟 − 1)2 + (
 𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

                                                        (6) 

 Em que: r é a correlação linear entre observações e simulações, σ obs é o desvio padrão nas 

observações, σ sim o desvio padrão nas simulações, μ sim a média da simulação e μ obs a média da 

observação. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑄𝑖,𝑜𝑏𝑠 − 𝑄𝑖,𝑠𝑖𝑚)

2𝑛
𝑖=1                                                                                           (7) 

Nesta equação utilizou-se a mesma notação que a Equação 5, o que muda é a disposição e 

operação das variáveis. 

Para o NSE o valor pode variar de 1 a -∞, sendo resultado abaixo de 0 ruim e 1 o melhor 

resultado possível. De modo semelhante, a métrica KGE se encontra entre 1 e -∞. Porém, valores 

menores que -0,41 são classificados como ruins e valores próximos à unidade, corresponderiam a de 

melhor desempenho. Consoante Knoben et al. (2019), ao fazer a relação entre o NSE e o KGE,  

valores satisfatórios para as métricas seriam NSE ≥ 0,5 e KGE ≥ 0,3.  Em relação ao RMSE, quanto 

menor valor, melhor será o resultado.  

 

RESULTADOS  
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 Descrição dos dados 

Com finalidade de compreender o comportamento dos dados utilizados, apresenta-se a Tabela 

2, contendo as medidas descritivas da vazão e precipitação média mensal, e temperatura mensal 

observadas na estação Tapirapuã e Salto do Céu, sub-bacia do Rio Sepotuba, compreendendo o 

período de janeiro de 2008 a dezembro de 2020.   

A vazão mínima observada ocorreu em setembro de 2019 e a máxima vazão registrada 

aconteceu em março de 2011. A vazão apresentou uma média coerente, o que pode ser constatado 

pelo coeficiente de variação menor que 50%. Para a precipitação, o valor máximo ocorreu no mês de 

dezembro de 2009, com as mínimas ocorrendo de maio a setembro, principalmente em junho e julho. 

A média das precipitações foi pouco significativa, principalmente por ter um coeficiente de variação 

próximo a 95%. Já para a temperatura, a mínima ocorreu em julho de 2012 e a máxima em setembro 

de 2019, com uma média muito representativa, já que o coeficiente de variação foi inferior a 10%.  

Tabela 2 – Medidas descritivas da Vazão, Precipitação e Temperatura. 

Medidas Descritivas Vazão (m³.s-1) Precipitação (mm) Temperatura (ºC) 

Mediana 121,94  115,22 25,10  

Média 142,78  146,77 24,56  

Mínima 69,58 0,00  20,00  

Máximo 346,81 598,60 27,90 

Desvio Padrão  58,54  137,82  1,66  

Coeficiente de Variação 41,01 93,90  6,78  

Assimetria 1,09 0,85 -0,72 
Fonte: Autores (2025). 

Na Figura 3 apresentam-se as funções de autocorrelação amostral (FAC) e de autocorrelação 

parcial amostral (FACP) da série temporal de vazões médias sem diferenciação, ou seja, dos dados 

reais. Percebe-se a presença de autocorrelação com significância diferente de zero em defasagens 

múltiplas de 12, confirmando a sazonalidade. Logo, a presença do componente sazonal, bem como o 

comportamento senoidal e infinito no correlograma da ACF, denota um processo do tipo 

autorregressivo, não estacionário e sazonal.  

Figura 3 – Funções de Autocorrelação. 

 

Legenda: a – Função de autocorrelação amostral (FAC); b – Função autocorrelação parcial amostral (FACP).  

Fonte: Autores (2025). 

A Figura 4 apresenta a série de vazões médias mensais decomposta em componentes de 

valores observados, tendência, sazonalidade e aleatoriedade (resíduos). Percebe-se na componente de 

sazonalidade que as séries variam periodicamente em torno de um valor médio, confirmando a 
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 presença dela nas séries analisadas. Na componente tendência verificou-se uma repetição de períodos 

de estiagens a cada quatro anos, com intensificação no período de 2015 a 2017. 

Figura 4 – Decomposição da série de vazão. 

 

Fonte: Autores (2025) 

Avaliação dos modelos desenvolvidos 

A tabela 3 apresenta um resumo dos modelos obtidos, considerando apenas a vazão no modelo 

SARIMA e as variáveis regressoras precipitação e temperatura nos modelos SARIMAX.  

 

Tabela 3 – Informações dos Modelos, Valores do AIC, Testes Estatísticos 

 

Como pode ser observado, os melhores modelos foram: SARIMA de ordens (1,0,0)(3,1,0), para 

SARIMAX 1 e SARIMAX 3 de ordem (0,0,1)(2,1,2), e para o SARIMAX 2 ordem (2,0,0)(2,1,1). 

Os valores do critério de AIC tendem a diminuir com a simplicidade do modelo, o que 

demonstra que o modelo SARIMAX 2 é ligeiramente melhor que os modelos para AIC. Vale resaltar 

que os critérios de AIC foram utilizados apenas para a identificação do modelo pelo auto.arima(). 

Embora os resíduos dos modelos não tenham seguido uma distribuição normal segundo o teste 

de Shapiro-Wilk (p<0,05), os testes de Ljung-Box (p<0.05) indicaram ausência de autocorrelação 

para os modelos SARIMAX 1 e 2, sugerindo que os resíduos se comportam como ruído branco.  

Avaliação de desempenho 

Nome Variável 

Regressora 
Modelo AIC 

Shapiro-Wilk 

(p-value) 

Ljung-Box 

(p-value) 

SARIMA - SARIMA(1,0,0)(3,1,0)[12] 1154,12 6,39E-07 0,935 

SARIMAX 1 Precipitação SARIMAX(0,0,1)(2,1,2)[12] 1160,33 1,59E-06 0,004 

SARIMAX 2 Temperatura SARIMAX(2,0,0)(2,1,1)[12] 1152,78 1,14E-06 0,940 

SARIMAX 3 
Precipitação + 

Temperatura 
SARIMAX(0,0,1)(2,1,2)[12] 1162,32 1,46E-06 0,004 
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 A Figura 5 apresenta as previsões para o ano de 2019, considerando os melhores modelos 

propostos.  

Figura 5 – Gráfico das vazões médias mensais observadas e previstas. 

 

Fonte: Autores (2025). 

Na Figura 5, pode-se perceber a similaridade entre as previsões dos modelos SARIMAX 1 e 

SARIMAX 3, já que agregaram ambos a precipitação como variável exógena, tendo essa mais 

influência na predição na predição. Para os modelos SARIMA e SARIMAX 2, houve superestimativa 

de vazões para o mês de fevereiro, assim como no período de junho a novembro, período de vazões 

mínimas observadas.  Nos meses de janeiro e março, todos os modelos subestimaram as vazões de 

pico, apenas prevendo com pouco erro o mês de dezembro.  

Diante disso, é importante salientar que tais previsões são satisfatórias nos períodos de treino e 

teste, já que estão em consonância aos verificados na literatura. Como pode-se perceber, os modelos 

SARIMA e SARIMAX tendem a subestimar vazões superiores, ou, ainda subestimar vazões mínimas, 

principalmente em períodos de estiagem, ou seja, eventos extremos são imprevisíveis para estes 

modelos (Bayer est al.,2012; Costa et al.,2023 e Caminha et al., 2025). 

A Figura 6 apresenta a comparação entre as métricas de desempenho para os períodos de treino 

e teste considerando os modelos desenvolvidos. 

Figura 6 – Gráficos das métricas de avaliação dos modelos. 

 
Legenda: a – Coeficiente de Nash-Sutcliffe (NSE); b – Coeficiente de Kling-Glupta (KGE); 

c – Raiz do erro quadrático médio (RSME)  

 Como se observa, todos os modelos no período de treino apresentaram resultados muito 

semelhantes como pode ser percebido com o KGE de 0,86. Mesmo assim, é possível ver a ligeira 

superioridade do modelo SARIMAX 2, que obteve NSE de 0,83 e RMSE de 23,74 m³.s-1, no período 

de teste. Já para o período de teste os modelos demonstraram boa adequação dos dados, por não haver 
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 overfitting (sobreajuste). O que comprova isso é o aumento dos resultados das métricas para todos os 

modelos do NSE e RMSE, com destaque para o SARIMAX 2 com as melhores previsões (NSE = 

0,92; RMSE de 18,58 m³.s-1).  

Como o KGE é uma medida que possui caraterísticas e parâmetros diferentes das outras 

métricas, houve uma queda na avaliação desse parâmetro para os modelos. O melhor resultado foi 

para o modelo SARIMA com o valor de 0,56. Enquanto para o modelo SARIMAX 2 foi de 0,36, 

sendo um valor ainda válido, como apresentado por Knoben (2019), mesmo sendo um valor menor 

que o desempenho do SARIMA.  

 Portanto, o modelo que apresentou o melhor desempenho foi o SARIMAX 2, sendo aquele 

que possuiu como variável exógena a temperatura. Todavia, isso não inviabiliza a validade dos outros 

modelos, já que para todos os testes, as métricas resultaram em valores próximos ao modelo 

SARIMAX 2, de modo que o emprego de variáveis regressoras tendem a aprimorar as previsões 

realizadas pelos modelos da família ARIMA. 

 

CONCLUSÃO 

Este trabalho teve por objetivo o desenvolvimento e análise de modelos estocásticos da família 

ARIMA para a previsão de vazões médias mensais de uma bacia do Rio Sepotuba, na cidade Tangará 

da Serra, Mato Grosso.  

O modelo de melhor desempenho, SARIMAX 2, considerou o emprego da temperatura como 

variável regressora, Tal resultado vai de encontro a literatura, em relação à melhoria do desempenho 

de modelos SARIMA quando variáveis regressoras são implementadas.  

Do mesmo modo, todos os modelos obtidos tiveram excelente desempenho verificado nas 

métricas obtidas, indicando a superioridade dos modelos SARIMAX em relação ao SARIMA para a 

bacia estudada.  
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