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APPLYING MACHINE LEARNING TECHNIQUES FOR BINARY LEAK
DETECTION IN WATER DISTRIBUTION SYSTEMS: A COMPARATIVE
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Abstract: Sanitation, hygiene, and access to clean water are fundamental human rights. However,
water distribution networks deteriorate over time due to aging infrastructure, failures, and increasing
water demand driven by population growth. This degradation leads to water losses and operational
inefficiencies, making efficient resource management essential and water system management
increasingly complex.

This study compares three Artificial Intelligence (AI) Machine Learning (ML) techniques - K-Nearest
Neighbors (KNN), Random Forest, and XGBoost - for binary leak detection in water distribution
systems. A hydraulic model based on the Hanoi network was used to simulate both normal and leak
conditions. Seven scenarios (four without leaks and three with leaks) were considered, generating
twelve training/testing combinations using a 70/30% controlled split.

The results demonstrate that Al models can classify operational data to detect leaks, with ensemble
methods (Random Forest and XGBoost) generally outperforming KNN in terms of accuracy and
consistency. This research highlights the potential of Al-based tools to help water utilities improve
operational efficiency, reduce non-revenue water, and enhance the sustainability of distribution
networks. By integrating machine learning with hydraulic simulation, the study contributes to
practical solutions for one of the most pressing challenges in water management. The findings suggest
that Al models can enhance leak detection capabilities, providing a valuable complement to
traditional monitoring methods and enabling proactive water loss management strategies.

Resumo: Saneamento, higiene e acesso a agua potavel sdo direitos humanos fundamentais. No
entanto, as redes de distribui¢do de agua se deterioram ao longo do tempo devido ao envelhecimento
da infraestrutura, falhas e aumento da demanda hidrica impulsionado pelo crescimento populacional.
Essa degradacdo leva a perdas de 4dgua e ineficiéncias operacionais, tornando essencial o
gerenciamento eficiente dos recursos e a gestdao dos sistemas hidricos cada vez mais complexa.

Este estudo compara trés técnicas de Aprendizado de Maquina (Machine Learning — ML) baseadas
em Inteligéncia Artificial (IA) — K-Nearest Neighbors (KNN), Random Forest ¢ XGBoost — para
adetecgdo bindria de vazamentos em sistemas de distribui¢ao de 4gua. Um modelo hidraulico baseado
na rede de Hanoi foi utilizado para simular condi¢des normais € com vazamentos. Foram
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considerados sete cendrios (quatro sem vazamentos e trés com vazamentos), gerando doze
combinagdes de treino/teste usando uma divisdo controlada de 70/30%.

Os resultados demonstram que modelos de IA podem classificar dados operacionais para detectar
vazamentos, com os métodos de ensemble (Random Forest e XGBoost) geralmente superando o KNN
em termos de acuricia e consisténcia. Esta pesquisa destaca o potencial de ferramentas baseadas em
IA para ajudar as operadoras de agua a melhorar a eficiéncia operacional, reduzir perdas nao
contabilizadas e aumentar a sustentabilidade das redes. Ao integrar aprendizado de maquina com
simula¢do hidraulica, o estudo contribui com solugdes praticas para um dos desafios mais urgentes
da gestao hidrica.

Palavras-Chave — Hydraulic Modeling, Water Loss Management, Supervised Learning Models.

INTRODUCTION

Water distribution systems (WDS) are crucial for providing clean water. However, water losses
due to leaks represent a significant global issue, contributing to resource waste, economic losses, and
environmental impacts. For example, in Brazil, data indicate the loss rate in water distribution
(INO049) was 37,8% (SNIS-AE 2022), slightly better than the total revenue loss rate of 37,06%
recorder in 2018 or the 39.21% recorded in 2017. In contrast, the distribution loss rate reached
38.45%, slightly worse than the 38.29% observed in 2017 (SNIS, 2018).

Recent advances in Artificial Intelligence (Al) offer promising solutions for improving the
monitoring and management of WDS, particularly in leak detection, where Al has demonstrated
effectiveness in various applications. This study aims to evaluate and compare the performance of
three Al-based machine learning classification techniques: K-Nearest Neighbors (KNN), XGBoost,
and Random Forest. for binary leak detection (i.e., determining whether a leak is present or not) using
hydraulic simulation data. These methods were selected due to their proven effectiveness in
classification tasks: KNN for its simplicity and interpretability (Cover & Hart, 1967), Random Forest
for its robustness to overfitting (Breiman, 2001), and XGBoost for its high accuracy in handling
structured data (Chen & Guestrin, 2016).

METHODOLOGY

The goal of this study is to detect leaks in water distribution networks early and accurately to
reduce unaccounted-for water losses, improve operational efficiency, and minimize both
environmental and economic impacts. The CRISP-DM methodology (Cross Industry Standard
Process for Data Mining) will be used. It is a very standard methodology in data science and machine
learning (Schroer et al., 2021), show in the Figure 1, was followed and adapted into four stages, as
outlined below:

Stage I: Business Understanding, Data Understanding, and Data Preparation.

This initial stage involved the generation and preprocessing of hydraulic data. A benchmark
dataset was used; all data have been compiled, checked, and labeled. The benchmark data were
sourced from the LeakDB archive developed for the 1st International WDSA/CCWI 2018 Joint
Conference.

Stage II: Modeling and Evaluation.
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Machine learning models were trained and evaluated during this stage. Data preparation was
iteratively refined as needed to improve model performance. Adjustments were made to ensure the
best possible input quality.

Stage III: Re-evaluation.

This stage focused on a critical analysis of results to determine whether any previous steps
needed to be repeated or adjusted.

Stage IV: Deployment preparation.

This stage involved waiting for real-world data to finalize potential deployment.

Figure 1 — CRISP-DM Methodology
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Three classical machine learning models from Al were selected: Random Forest, XGBoost, and
K-Nearest Neighbors (KNN). These were chosen for their simplicity, interpretability, and
performance. The model advantages are shown in Table 1. A summary of their main characteristics
is provided below:

e K-Nearest Neighbors (KNN): A simple, instance-based supervised learning algorithm
used for classification and regression. It predicts a new observation's label based on the
majority vote or average of its “k” closest neighbors in the feature space (Cover & Hart,
1967).

¢ Random Forest: An ensemble learning method that builds multiple decision trees and
combines their predictions through majority voting (for classification) or averaging (for
regression). It introduces randomness via bootstrapped sampling and feature selection

to reduce overfitting (Breiman, 2001).
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e XGBoost: An advanced gradient boosting framework that builds trees sequentially,

where each tree corrects the errors of the previous ones. It optimizes a loss function

using gradient descent, with strong performance and built-in regularization (Chen &

Guestrin, 2016).

Table 1 — Advantages of the machine learning methods

KNN

Random Forest

XGBoost

Simple implementation with
no explicit training phase.
Dynamically adapts to new
data.

Effective for small, low-
dimensional datasets.

Reduces overfitting via
ensemble averaging and
feature randomness.
Handles high-dimensional data
effectively.

Provides feature importance
metrics.

Robust to outliers and noise.

State-of-the-art predictive
performance.
Built-in (L1/L2)
regularization.
Efficient handling of missing
data.

Scalable with parallel
processing.

Hydraulic data included 10 different scenarios with characteristics detailed in Table 2. The
simulations were implemented in Python using Anaconda, leveraging standard libraries, WNTR, the
EPyT tool, and EPANET. Each scenario simulated a one-year period with 30-minute time steps,
generating data on pressure, demand, and flow. These parameters were extracted from each scenario
to build the dataset, with labels added to prepare it for use in training and testing the different models.

Table 2 — The scenarios from the benchmark

Scenario| Leaks | Node | Beggining End Peak
1 No
& No
3 Yes 19 6350 7210.5 7210.5
3 Yes 26 1513 3915.5 3589.5
4 No
5 Yes 21 1775 4739.5 4567.5
6 Yes 18 6442.5 7480.5 7400
7 Yes 14 8530 8688 8688
8 Yes 17 4758 6268 4687
8 Yes 21 5462 7226 7226
) No
10 Yes 12 7421 7555 7555
10 Yes 28 3397.5 7115.5 7115.5

To simplify the classification task, only scenarios with one leak and without leaks were
considered. A total of seven scenarios were selected: four without leaks and three with one leak. This
resulted in twelve unique training/testing combinations (with a 70/30% split), as shown in Table 3.
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Table 3 — The scenarios from the benchmark
Scenarios considered
Combinations Train Test
Combi 1 2 4 6 7 9 1 5
Combi 2 2 4 5 7 9 1 6
Combi 3 2 4 5 6 9 1 7
Combi 4 1 4 6 7 9 2 5
Combi 5 1 4 5 7 9 2 6
Combi 6 1 4 5 6 9 2 7
Combi 7 1 2 6 7 9 4 5
Combi 8 1 2 5 7 9 4 6
Combi 9 1 2 5 6 9 4 7
Combi 10 1 2 4 6 7 9 5
Combi 11 1 2 4 5 7 9 6
Combi 12 1 2 4 5 6 9 7
No Leak
Leak

Hydraulic data were compiled into datasets with labeled instances, each including the
timestamp and a leak label (1 = leak, 0 = no leak). Each combined data from multiple nodes over
time, capturing dynamic system behavior.

Twelve combinations were generated to evaluate model generalizability, balancing classes in
both training and testing sets (70/30%).

All models were implemented in Python using Anaconda, leveraging standard libraries. The
computations were executed on a computer with the following specifications:

e Operating System: Windows 11
e Processor: AMD Ryzen 5 5500U with Radeon Graphics, 2.10 GHz, 6 cores, 12 logical
processors
e RAM: 16 GB
Training times varied significantly:
e KNN: around 7 minutes
e XGBoost: around 21 minutes
e Random Forest: around 90 minutes

A noteworthy difference in computational cost between the models.
RESULTS

The models were evaluated using the following standard classification metrics: accuracy,
precision, recall, F1-score and the respective confusion matrices.

Recall (also called Sensitivity or True Positive Rate) measures how well a model identifies all
relevant positive cases. It calculates the proportion of actual positives correctly predicted as positive

XXVI Simpdésio Brasileiro de Recursos Hidricos (ISSN 2318-0358) 3



ABRHIdro

(finding all leaks in a water network). High Recall means fewer missed positives (Powers 2011).
Precision (also called Confidence or True Positive Accuracy) evaluates how reliable the model’s
positive predictions are. It measures the proportion of predicted positives that are truly positive (leaks
flagged by the model that are real leaks, not false alarms) (Powers 2011).

The Fl-score (or F-measure) is the harmonic mean of Precision and Recall, emphasizing
balance. A confusion Matrix is a tabular representation of true vs. predicted labels, detailing true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

Figure 2— Metrics of the different combinations and confusion matrices, of the different models.

Combi_1 Combi_10 Combi_11
KNN XGBoost Random_Forest KNN XGBoost Random_Forest KNN XGBoost Random_Forest
Accuracy 0.62243 0.66153 0.65137 Accuracy 0.74284 0.83076 0.75542 Accuracy 0.93904 0.95168 0.95068
Precision 0.14727 0.0 0.47563 Precision 0.04943 0.0 0.34445 Precision 0.0 0.0 0.37313
Recall 0.02411 0.0 0.29292 Recall 0.0285 0.0 0.49292 Recall 0.0 0.0 0.04472
F1_Score 0.04144 0.0 0.36255 F1_Score 0.03615 0.0 0.40552 F1_Score 0.0 0.0 0.07987
Combi_12 Combi_2 Combi_3
KNN XGBoost Random_Forest KNN XGBoost Random_Forest KNN XGBoost Random_Forest
Accuracy 0.95014 0.99683 0.41398 Accuracy 0.90428 0.90428 0.91102 Accuracy 0.97272 0.996 0.93761
Precision 0.02206 0.93277 0.01516 Precision 0.0 0.0 0.96825 Precision 0.0 1.0 0.22443
Recall 0.1041 0.70032 0.99685 Recall 0.0 0.0 0.07275 Recall 0.0 0.77918 0.99685
F1_Score 0.0364 0.8 0.02986 F1_Score 0.0 0.0 0.13533 F1_Score 0.0 0.87589 0.36638
Combi_4 Combi_5 Combi_6
KNN XGBoost Random_Forest KNN XGBoost Random_Forest KNN XGBoost Random_Forest
Accuracy 0.80925 0.83967 0.79603 Accuracy 0.95214 0.95214 0.95671 Accuracy 0.98136 0.99934 0.67003
Precision 0.12072 1.0 0.3966 Precision 0.0 0.0 0.97619 Precision 0.0 1.0 0.02661
Recall 0.02024 0.05261 0.39359 Recall 0.0 0.0 0.09779 Recall 0.0 0.92744 0.99685
F1_Score 0.03466 0.09997 0.39509 F1_Score 0.0 0.0 017778 F1_Score 0.0 0.96236 0.05183
Combi_7 Combi_8 Combi_9
KNN XGBoost Random_Forest KNN XGBoost Random_Forest KNN XGBoost Random_Forest
Accuracy 0.79789 0.83028 0.78818 Accuracy 0.95214 0.95214 0.95331 Accuracy 0.94558 0.99349 0.71986
Precision 0.10221 0.0 0.33922 Precision 0.0 0.0 0.62577 Precision 0.0 1.0 0.03128
Recall 0.02496 0.0 0.26543 Recall 0.0 0.0 0.06082 Recall 0.0 0.28076 1.0
F1_Score 0.04012 0.0 0.29782 F1_Score 0.0 0.0 0.11087 F1_Score 0.0 0.43842 0.06067
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For comparative analysis, a summary chart comparing the metrics across all 12 training/testing
configurations of each method is presented in Figure 2, highlighting the best-performed metrics. For
a more detailed visualization, Figures 3 and 4 provide focused insights into accuracy and F1-score
trends, respectively. The Fl-score is emphasized due to its relevance in leak detection, where both
false alarms (precision) and missed leaks (recall) carry operational consequences. Fl-score is
emphasized due to the operational need to balance false alarms (costly inspections) and missed leaks
(water loss) and the Confusion matrices highlight differences between models.
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Overall, the best performance was observed in combination Combi_ 12, which achieved a
precision of 0.9968 and an F1-score of 0.8, and in combination Combi_6, which reported an F1-score
of 0.9624, both using XGBoost. However, several models exhibited either precision or recall values
close to 0, suggesting possible data imbalance or overfitting issues. It is also noteworthy that Combi_3
achieved perfect precision (1.0) along with a decent recall (0.7792), whereas Combi_9 showed perfect
recall (1.0) but very low precision (0.0313), both results being obtained with the Random Forest
algorithm.

Figura 3 — Comparison of accuracy by technique and combination
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Figura 4 — Comparison of F1_Score by technique and combination
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COMPARISION

The performance differences observed among the models can be attributed to how each
algorithm handles the characteristics of the data, particularly class imbalance and the complexity of
the data in the hydraulic simulations.

e XGBoost: Consistently outperformed the other algorithms across multiple
combinations, including Combi 6 and Combi 12, showing both high precision and
balanced F1-scores.

e Random Forest: Performed well in several combinations, especially in Combi 11,
achieving a strong F1-score of 0.8759, but also suffered from inconsistencies.

e K-Nearest Neighbors (KNN): While simple and easy to implement, it struggled in most
scenarios. It demonstrated lower performance compared to the other models, although

it achieved acceptable results in a few specific configurations.

CONCLUSIONS AND FUTURE WORK

This study demonstrates the applicability of Al and ML techniques for binary leak detection in
water distribution systems. Among the evaluated models, XGBoost emerged as the most consistent
algorithm, suggesting its ability to capture the most informative features within the simulated
hydraulic data. Random Forest also performed well, but exhibited some limitations, such as missing
actual leaks or generating false positives in certain scenarios. K-NN showed the weakest performance
overall, largely due to the high-class imbalance in the data, which hindered its ability to reliably
distinguish leak events. These results reinforce the complexity of the problem being addressed.

These findings highlight the importance of selecting algorithms capable of handling complex,
imbalanced datasets, particularly in critical infrastructure applications.

Future work will include:

v" A deeper and refined analysis of the combinations, especially: Combi_6 The best all-
rounder — F1 = 0.96, Precision = 1.0, Recall = 0.927, Combi_11: Very good balance
between recall and precision, Combi_12: High precision with good recall. All with
XGBoost, which may have the most informative features
Expanding the analysis to multiclass classification for leak localization.

Exploring how synthetic data could be closer to real-world data to improve training

Incorporating real-world data to validate and improve the generalizability of models.

RSN N

Exploring additional Al techniques, such as deep learning and hybrid models.
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