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Abstract: The methodological procedure developed allowed the automatic execution, in batch 

mode, of the automatic calibration of the IPH II lumped hydrological model, and the simulations in 

the validation and test periods using the optimized set of parameters, considering a set of different 

split-sample approaches. Depending on the metric used in the calibration, validation and testing of 

the model, the performance of the split-sample approach was different. Thus, when the Kling-Gupta 

efficiency (KGE) was used, the split-sample approach that used all the data available in the 

calibration and did not include the validation period presented the best performance, however, when 

the root mean square error of the inverse of the streamflow (RMSEI) metric was used, it was the 

split-sample approach that presented the worst performance. When comparing exclusively the 

performances of split-sample approaches that use calibration and validation periods, the results 

were also influenced by the choice of the metric. When KGE was used, the split-sample approach 

with calibration in the most recent period and validation in the oldest period presented better 

performance than the inverse split-sample approach. The opposite happened when using RMSEI as 

metric, with the split-sample approach with calibration in the older period and validation in the 

recent period, presenting better performance.  

 

Resumo: O procedimento metodológico desenvolvido permitiu a execução automática, em 

batelada, da calibração automática do modelo hidrológico concentrado IPH II, e as simulações nos 

períodos de validação e teste utilizando o conjunto otimizado dos parâmetros, considerando um 

conjunto de estratégias de divisão de dados diferentes. Dependendo da métrica utilizada na 

calibração, validação e teste do modelo, o desempenho das estratégias de divisão dos dados foi 

diferente. Dessa forma, quando utilizado o coeficiente de Kling-Gupta (KGE), a estratégia que usa 

todos os dados disponíveis na calibração e não incluiu o período de validação foi a que apresentou 

melhor desempenho, porém, quando utilizado a métrica raiz quadrada do erro quadrático médio do 

inverso das vazões (RMSEI), foi a estratégia que apresentou pior desempenho. Se comparados 

exclusivamente os desempenhos de estratégias de divisão de dados que utilizam períodos de 

calibração e validação, os resultados também se mostraram influenciados pela escolha da métrica. 

Quando utilizado o KGE, a estratégia que considerou a calibração no período mais recente e a 

validação no período mais antigo apresentou melhor desempenho que a estratégia inversa. O 

contrário aconteceu quando utilizado o RMSEI, com a estratégia de calibrar o modelo com dados 

antigos e validar com dados recentes apresentando melhor desempenho. 
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INTRODUÇÃO 

Um dos principais objetivos da modelagem hidrológica é representar o comportamento da 

água na bacia hidrográfica. Para isso, são utilizados modelos que consistem em equações 

matemáticas fundamentadas em leis físicas. Essas equações são capazes de simular processos 

hidrológicos complexos de forma eficaz (Blöschl et al., 2013). Assim, os modelos hidrológicos são 

representações da natureza que possuem parâmetros que representam características da bacia 

(Tucci, 1998).  

 O processo da modelagem hidrológica pode ser dividido em duas etapas: calibração e 

validação do modelo. A calibração de modelos hidrológicos é um processo de ajuste de parâmetros 

influentes durante um período específico da série histórica. O objetivo da calibração pode ser, por 

exemplo, obter os valores dos parâmetros que permitam que as vazões estimadas pelo modelo 

hidrológico sejam próximas das vazões observadas (Arsenault et al., 2018). Porém, na modelagem 

hidrológica não existe um único conjunto de parâmetros capaz de representar todos os processos 

hidrológicos (Bravo et al., 2009). Beven e Binley (1992) introduziram o conceito de equifinalidade 

em que estabelece a possibilidade da existência de múltiplos conjuntos de parâmetros que são 

adequados como resposta. Por causa disso, é necessário buscar métodos eficientes para garantir que 

o ajuste dos parâmetros foi corretamente executado, pois dependendo do objetivo de seu estudo 

existirá parâmetros que representam melhor os picos de vazão e outros que representam melhor os 

períodos de estiagem, por exemplo. 

Para saber se o modelo está adequado no ajuste dos parâmetros é utilizada uma ou mais 

funções-objetivo que quantificam as diferenças entre os resultados do modelo e as observações. 

Uma função-objetivo é uma equação matemática que deve ser minimizada ou maximizada para 

garantir a máxima semelhança entre os resultados do modelo e as observações (Arsenault et al., 

2018). 

 Após a calibração do modelo é necessário verificar o seu desempenho durante a etapa de 

validação. A validação de modelos, verificação de modelos ou avaliação de modelos, segundo 

Legates e McCabe (1999), é o processo em que se faz uma comparação entre os resultados do 

modelo e as observações, em um período diferente do período utilizado na calibração, com o 

objetivo de avaliar se os modelos são adequados para um determinado propósito. 

Conforme mencionado por Coron et al. (2012), o desempenho do modelo no período de 

validação é condicionado pela escolha do período de calibração. Além disso, Guo et al. (2018) e 

Knoben et al. (2020), verificaram que a duração do período de calibração tem influências variadas 

na modelagem hidrológica. Dessa forma, a estratégia de divisão de dados é uma decisão 

fundamental na construção de um modelo.  

Shen et al. (2022) realizaram um estudo incluindo um grande número de bacias hidrográficas 

e modelos hidrológicos, focado na decisão sobre como dividir os dados nos períodos de calibração e 

validação considerando diferentes períodos de disponibilidade de dados. Além disso, foi verificado 

o desempenho do modelo em um período pós-validação, denominado de período de teste nesse 

trabalho. Estes autores apresentaram duas conclusões principais: 1) Calibrar modelos hidrológicos 

com dados mais antigos e depois validar os modelos com dados mais recentes produz um 

desempenho inferior no período de teste e 2) Calibrar um modelo hidrológico com todo o período 

de dados disponível, sem fazer a validação, representa a escolha mais robusta. 

Para fazer pesquisas como a apresentada por Shen et al. (2022) é necessário avaliar inúmeras 

estratégias de divisão dos dados, cada uma associada a um processo de calibração automática e 

validação do modelo, em cada bacia hidrográfica. Se cada estratégia for implementada 
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manualmente, levaria um tempo muito grande para se terem todos os resultados. Por esse motivo, o 

objetivo desse trabalho foi desenvolver um procedimento metodológico que permita a execução 

automática, e em batelada, da calibração automática de um modelo hidrológico concentrado, e as 

simulações nos períodos de validação e teste utilizando o conjunto otimizado dos parâmetros, 

considerando um conjunto de estratégias de divisão de dados. Como exemplo de aplicação dessa 

metodologia, foi feita uma análise similar ao apresentado em cada bacia hidrográfica por Shen et al. 

(2022), utilizando como estudo de caso uma bacia hidrográfica brasileira. 

 

METODOLOGIA 

Nesse item é apresentado o procedimento metodológico adotado para o desenvolvimento de 

múltiplos processos de calibração de forma automatizada e em batelada. Após essa etapa, obtém-se 

o conjunto otimizado dos parâmetros do modelo hidrológico para cada processo, seguido da 

simulação correspondente nos períodos de validação e teste. 

 

Modelo hidrológico e ferramenta de otimização utilizada 

O modelo hidrológico IPH II foi utilizado neste trabalho. O IPH II é um modelo hidrológico 

chuva-vazão do tipo concentrado, desenvolvido no Instituto de Pesquisas Hidráulicas da 

Universidade Federal do Rio Grande do Sul e tem sete parâmetros calibráveis (Bravo et al., 2007). 

Para resolver o problema de otimização em que consiste a calibração automática, foi utilizado o 

algoritmo evolucionário mono-objetivo SCE-UA (Duan et al., 1992). O acoplamento do IPH II ao 

SCE-UA foi feito através de um programa desenvolvido em linguagem FORTRAN.  

 

Ajustes em batelada do modelo hidrológico 

Entende-se nesse trabalho como ajuste em batelada, o processo de ajustar múltiplas vezes um 

modelo hidrológico, sendo em cada caso utilizado um período de calibração e validação diferente 

da série histórica. 

Para evitar a influência da condição inicial nos resultados obtidos, qualquer que seja a 

estratégia de divisão de dados, o primeiro ano da série histórica foi considerado como de 

aquecimento do modelo e não foi utilizado no cálculo de métricas.  

Em uma estratégia qualquer de divisão de dados, os dados disponíveis em todo o período são 

utilizados na execução do modelo hidrológico, porém, no cálculo da função-objetivo é incluído 

apenas o período de calibração definido na estratégia. Uma vez concluído o processo de calibração 

automática, os parâmetros otimizados e o modelo hidrológico são utilizados para gerar uma nova 

simulação para todo o período disponível, a partir da qual é estimada a medida de desempenho nos 

períodos de validação e teste definidos na estratégia de divisão de dados.  

Do ponto de vista computacional, para executar o conjunto de estratégias de divisão de dados 

foram utilizados arquivos de entrada adicionais ao processo de calibração automática e que definem 

os períodos de calibração, validação e teste de cada estratégia. Também foram incluídos dois passos 

adicionais: (1) identificação dos parâmetros otimizados uma vez que o processo de calibração 

termina, e (2) execução de um processo de simulação do modelo hidrológico utilizando esses 

valores dos parâmetros. Dessa forma o procedimento metodológico completo é apresentado no 

formato de algoritmo na Figura 1. 
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Figura 1 – Algoritmo do procedimento metodológico

 

APLICAÇÃO DA METODOLOGIA 

Nesse item é apresentado uma aplicação da metodologia em análise similar ao apresentado 

por Shen et al. (2022) em uma bacia hidrográfica brasileira. Shen et al. (2022) compararam o 

desempenho da calibração do modelo utilizando todos os dados disponíveis, sem considerar a 

validação, contra outras estratégias de divisão dos dados, considerando diferentes disponibilidades 

de dados. Também compararam o desempenho de calibrar o modelo com dados mais antigos e 

validar com dados mais recentes, contra calibrar o modelo com dados mais recentes e validar com 

dados mais antigos. 

 

Estudo de caso 

Os dados utilizados no estudo foram retirados do CAMELS-BR versão 1.1. O CAMELS-BR 

fornece séries temporais diárias de vazão observada para 3679 estações de medição, séries 

temporais diárias de variáveis meteorológicas e 65 atributos para 897 bacias hidrográficas 

selecionadas no Brasil (Chagas et al., 2020).  

A bacia hidrográfica selecionada foi a do Arroio Pelotas, delimitada até o posto fluviométrico 

Ponte Cordeiro de Farias (código ANA 88850000), conforme apresentado na Figura 2. O Arroio 

Pelotas pertence à sub-bacia da lagoa Mirim, e está localizado no Rio Grande do Sul. Essa bacia foi 

selecionada em função da disponibilidade de dados sem falhas no período 01/01/1980 até 

31/12/2018, e por apresentar uma área de 380,63 km2 compatível com o uso de modelo hidrológico 

concentrado.  
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Figura 2 – Localização da bacia hidrográfica do Arroio Pelotas 

 
 

Estratégias de divisão de dados 

Este estudo utilizou múltiplos esquemas de divisão de dados para calibração e validação do 

modelo, além de aplicar testes pós-validação. Foram criadas nove estratégias de divisão de dados, 

divididas em três conjuntos, conforme apresentado na Tabela 1 à Tabela 3. Cada uma das 

estratégias foi considerada um cenário de ajuste do modelo hidrológico, e em cada conjunto de 

estratégias, o período de dados considerado disponível foi o mesmo. 

O conjunto 1 inclui os cenários 1 a 3 (Tabela 1) que consideraram a existência de dados para 

ajuste do modelo apenas no período 01/01/1980 a 31/12/1990 (11 anos de dados). O período de 

teste abrangeu os 8 anos seguintes (de 01/01/1991 a 31/12/1998). Por sua vez, o conjunto 2 inclui os 

cenários 4 a 6 (Tabela 2) que consideraram a existência de dados para ajuste do modelo apenas no 

período 01/01/1980 a 31/12/2000 (21 anos de dados). O período de teste abrangeu os 8 anos 

seguintes (de 01/01/20001 a 31/12/2008). Por fim, o conjunto 3 inclui os cenários 7 a 9 (Tabela 3) 

que consideraram a existência de dados para ajuste do modelo apenas no período 01/01/1980 a 

31/12/2010 (31 anos de dados). O período de teste abrangeu os 8 anos seguintes (de 01/01/2011 a 

31/12/2018). Em todos os cenários, o ano de 1980 foi considerado de aquecimento. 
  

Tabela 1 – Conjunto 1 de estratégias de divisão dos dados considerando dados no período 01/01/1980 a 31/12/1990. 

CENÁRIO 1980 1981-1985 1986-1990 1991-1998 

1 Aquecimento Calibração Validação Teste 

2 Aquecimento Validação Calibração Teste 

3 Aquecimento Calibração Calibração Teste 



                                                                              

6 

XXVI Simpósio Brasileiro de Recursos Hídricos (ISSN 2318-0358) 

Tabela 2 – Conjunto 2 de estratégias de divisão dos dados considerando dados no período 01/01/1980 a 31/12/2000. 

CENÁRIO 1980 1981-1990 1991-2000 2001-2008 

4 Aquecimento Calibração Validação Teste 

5 Aquecimento Validação Calibração Teste 

6 Aquecimento Calibração Calibração Teste 

 

Tabela 3 – Conjunto 3 de estratégias de divisão dos dados considerando dados no período 01/01/1980 a 31/12/2010. 

CENÁRIO 1980 1981-1995 1996-2010 2011-2018 

7 Aquecimento Calibração Validação Teste 

8 Aquecimento Validação Calibração Teste 

9 Aquecimento Calibração Calibração Teste 

 

Função-objetivo e medida de desempenho 

Foram utilizadas duas métricas como funções-objetivo no período de calibração, o coeficiente 

de Kling-Gupta (KGE – equação 1) e a raiz quadrada do erro quadrático médio do inverso das 

vazões (RMSEI – equação 2). Elas foram utilizadas uma por vez, dado o uso de um método de 

otimização mono-objetivo durante a calibração do modelo hidrológico. Dessa forma, o processo de 

calibração consistiu na maximização do KGE (varia de - ∞ a 1) ou na minimização do RMSEI 

(varia de 0 a +∞). Estas métricas foram também utilizadas como medidas de desempenho no 

período de validação e teste. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑄𝑐

𝜎𝑄𝑜
− 1)2 + (

𝑄𝑐

𝑄𝑜
− 1)                                               (1) 

𝑅𝑀𝑆𝐸𝐼 = √
∑𝑁𝑇𝑖=1 (

1

𝑄𝑐𝑖
−

1

𝑄𝑜𝑖
)2

𝑁𝑇
                                                                                  (2) 

Onde: Qoi é o valor de vazão observada no intervalo de tempo i, Qci é o valor de vazão calculada 

no intervalo de tempo i, NT é o número de intervalos de tempo da série analisada, 𝑄𝑐 é a média das 

vazões calculadas, 𝑄𝑜é a média das vazões observadas, r é o coeficiente de correlação de Pearson, 

σQc é desvio padrão das vazões calculadas e σQo é desvio padrão das vazões observadas.   

 

Pontuação de desempenho 

Em função da aplicação da metodologia estar associada ao caso específico da análise 

apresentada por Shen et al. (2022), foi estimada uma pontuação de desempenho.  

O primeiro sistema de pontuação busca verificar se o cenário sem validação (usa todos os 

dados disponíveis na calibração) tem um desempenho melhor que os outros dois cenários e leva em 

conta os seguintes critérios: caso em um dos conjuntos de cenários (por exemplo o conjunto 1 que 

inclui os cenários 1, 2, 3) ocorrer do cenário sem validação (cenário 3) obtiver um desempenho 

melhor do que os outros dois cenários (1 e 2) no período de teste, a bacia recebe um ponto. Isto foi 

repetido nos outros dois conjuntos de cenários (conjunto 2 que inclui os cenários 4, 5 e 6, e o 

conjunto 3 que inclui os cenários 7, 8 e 9). Dessa forma a maior pontuação em uma bacia é três, e a 

menor pontuação é zero, caso não tenha acontecido em nenhum dos conjuntos.  
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O segundo sistema de pontuação busca verificar se o cenário que calibra o modelo hidrológico 

com os dados mais recentes e valida com os mais antigos tem melhor desempenho comparado ao 

cenário que calibra o modelo com os dados mais antigos e valida com os mais recentes, e leva em 

conta os seguintes critérios: caso em um dos conjuntos de cenários (por exemplo o conjunto 1 que 

inclui os cenários 1, 2, 3) ocorrer do cenário que utiliza os dados mais recentes na calibração 

(cenário 2) ter melhor desempenho que o cenário que utiliza dados mais antigos na calibração 

(cenário 1) no período de teste, a bacia recebe um ponto. Isto foi repetido nos outros dois conjuntos 

de cenários (conjunto 2 que inclui os cenários 4, 5 e 6, e o conjunto 3 que inclui os cenários 7, 8 e 

9). Dessa forma a maior pontuação em uma bacia é três, e a menor pontuação é zero, caso não tenha 

acontecido em nenhum dos conjuntos.  

 

RESULTADOS 

Nesse item são apresentados os resultados da aplicação da metodologia considerando as 

diferentes estratégias de divisão dos dados e duas diferentes métricas utilizadas como funções-

objetivo. As mesmas métricas foram utilizadas como medidas de desempenho do ajuste nos 

períodos de validação e teste.  

A comparação dos resultados foi feita entre os cenários que pertencem a cada conjunto 

previamente definido (conjunto 1: cenários 1 a 3; conjunto 2: cenários 4 a 6 e conjunto 3: cenários 7 

a 9). Esta abordagem foi adotada porque, em cada conjunto, o período de dados considerado 

disponível foi o mesmo, apenas mudando na estratégia de divisão dos dados.  

 

Desempenho das estratégias de divisão de dados utilizando o KGE como métrica 

No conjunto 1 (11 anos de dados disponíveis) de estratégias de divisão dos dados foi possível 

observar as afirmações de Shen et al. (2022). Os resultados do coeficiente de Kling-Gupta (KGE) 

para o cenário 3, que usa todos os dados disponíveis na calibração e não incluiu o período de 

validação, foi melhor que os dos cenários 1 e 2, que dividem os dados disponíveis em períodos de 

calibração e validação. Além disso, o cenário que considerou a calibração no período mais antigo e 

a validação no período mais recente (cenário 1) foi o que apresentou o pior desempenho. O valor do 

KGE obtido no período de teste no cenário 3 foi igual a 0,7839 enquanto nos cenários 1 e 2 foi igual 

a 0,7673 e 0,7824, respectivamente.  

No conjunto 2 (21 anos de dados disponíveis) de estratégias de divisão de dados foi possível 

observar que calibrar com dados antigos e validar com os recentes (cenário 4) representou 

novamente a pior estratégia. O cenário em que se calibrou com dados recentes e validou com dados 

antigos (cenário 5) foi a melhor estratégia, superando inclusive o cenário que não utilizou a 

validação (cenário 6). O valor do KGE obtido no período de teste no cenário 5 foi igual a 0,5263 

enquanto nos cenários 4 e 6 foi igual a 0,3898 e 0,4764, respectivamente.  

No conjunto 3 (31 anos de dados disponíveis) de estratégias de divisão dos dados foi possível 

observar resultados similares aos obtidos com o conjunto 1. O desempenho no cenário 9, que não 

considerou a validação, foi melhor que nos cenários 7 e 8 que utilizaram validação. Além disso, o 

cenário que considerou a calibração no período mais antigo e a validação no período mais recente 

(cenário 7) foi o que apresentou o pior desempenho. O valor do KGE obtido no período de teste no 

cenário 9 foi igual a 0,6127 enquanto nos cenários 7 e 8 foi igual a 0,5088 e 0,5509, 

respectivamente. 
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Quanto ao sistema de pontuação de desempenho de estratégias de divisão de dados 

específicas, na bacia do Arroio Pelotas e no caso do uso da métrica KGE, não usar validação obteve 

2 pontos, pois foi a melhor estratégia em 2 de 3 conjuntos. Por sua vez, a estratégia de usar dados 

recentes para calibrar o modelo e validar com dados antigos obteve 3 pontos, pois foi melhor que a 

estratégia de calibrar com dados antigos e validar com dados recentes nos 3 conjuntos. 

Também foi analisado como a estratégia de divisão de dados afeta os valores dos parâmetros 

obtidos durante o processo de calibração automática do modelo IPH II. A Figura 3 mostra os 

resultados obtidos quando utilizado o KGE como função-objetivo. Os valores dos parâmetros H, 

Rmax e 𝐼0 do modelo IPH II apresentaram valores diferentes conforme o cenário de calibração. Já 

os parâmetros K, 𝐾𝑠𝑢𝑏 e alfa não foram influenciados fortemente pela estratégia de divisão de 

dados, pois praticamente foram obtidos os mesmos valores em todos os cenários. 
 

Figura 3 – Valores normalizados dos parâmetros do modelo IPH II obtidos por calibração automática utilizando 

a métrica KGE, para diferentes estratégias de divisão de dados. 

 

 

Desempenho das estratégias de divisão de dados utilizando o RMSEI como métrica 

No conjunto 1 de estratégias de divisão dos dados, o cenário 1 que utilizou dados mais antigos 

na calibração e dados mais recentes na validação foi o que apresentou o melhor desempenho 

quando utilizada a métrica RMSEI. O valor do RMSEI obtido no cenário 1 no período de teste foi 

igual a 0,2383 s/m3, enquanto nos cenários 2 e 3 foi igual a 0,3376 s/m3 e 0,3337 s/m3, 

respectivamente.  

No conjunto 2 de estratégias de divisão dos dados, o cenário 5 que utilizou dados mais 

recentes na calibração e dados mais antigos na validação foi o que apresentou o melhor 

desempenho. O valor do RMSEI obtido no cenário 5 no período de teste foi igual a 0,2280 s/m3, 

enquanto nos cenários 4 e 6 foi igual a 0,3279 s/m3 e 0,2325 s/m3, respectivamente.  

No conjunto 3 de estratégias de divisão dos dados foi possível observar novamente resultados 

similares aos obtidos com o conjunto 1. O desempenho no cenário 7, que utilizou dados mais 

antigos na calibração e dados mais recentes na validação, foi melhor que nos cenários 8 e 9. O valor 
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do RMSEI obtido no período de teste no cenário 7 foi igual a 5,0442 s/m3 enquanto nos cenários 8 e 

9 foi igual a 5,0845 s/m3 e 5,0629 s/m3, respectivamente. 

Quanto ao sistema de pontuação de desempenho de estratégias de divisão de dados 

específicas, na bacia do Arroio Pelotas e no caso do uso da métrica RMSEI, não usar validação 

obteve 0 pontos, pois não foi a melhor estratégia em nenhum dos conjuntos. Por sua vez, a 

estratégia de usar dados recentes para calibrar o modelo e validar com dados antigos obteve 1 

ponto, pois foi melhor que a estratégia de calibrar com dados antigos e validar com dados recentes 

em apenas 1 dos 3 conjuntos. 

Conforme apresentado no item anterior, a estratégia de divisão de dados também afetou os 

valores dos parâmetros obtidos durante o processo de calibração do modelo IPH II utilizando o 

RMSEI (Figura 4). Neste caso, todos os parâmetros do modelo IPH II apresentaram diferentes 

valores em função da estratégia de divisão de dados utilizada.  
 

Figura 4 – Valores normalizados dos parâmetros do modelo IPH II obtidos por calibração automática utilizando 

a métrica RMSEI, para diferentes estratégias de divisão de dados. 

 

 

CONCLUSÕES E RECOMENDAÇÕES 

O procedimento metodológico desenvolvido permitiu a execução automática, em batelada, da 

calibração automática do modelo hidrológico concentrado IPH II, e as simulações nos períodos de 

validação e teste utilizando o conjunto otimizado dos parâmetros, considerando um conjunto de 

estratégias de divisão de dados diferentes. Como exemplo de aplicação dessa metodologia, foi feita 

uma análise similar ao apresentado em cada bacia hidrográfica por Shen et al. (2022), utilizando 

como estudo de caso uma bacia hidrográfica brasileira.  

Dependendo da métrica utilizada na calibração, validação e teste do modelo, o desempenho 

das estratégias de divisão dos dados foi diferente. Dessa forma, quando utilizado o KGE, a 

estratégia que usa todos os dados disponíveis na calibração e não incluiu o período de validação foi 

a que apresentou melhor desempenho, porém, quando utilizado o RMSEI foi a estratégia que 

apresentou pior desempenho. Quando comparados exclusivamente os desempenhos de estratégias 

de divisão de dados que utilizam períodos de calibração e validação, os resultados também se 
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mostraram influenciados pela escolha da métrica. Quando utilizado o KGE, a estratégia que 

considerou a calibração no período mais recente e a validação no período mais antigo apresentou 

melhor desempenho que a estratégia inversa, de calibrar no período mais antigo e validar no período 

mais recente. O contrário aconteceu quando utilizado o RMSEI, com a estratégia de calibrar o 

modelo com dados antigos e validar com dados recentes apresentando melhor desempenho. Os 

valores dos parâmetros obtidos durante o processo de calibração automática do modelo IPH II 

também foram afetados pela estratégia de divisão de dados utilizada. 

Recomenda-se que futuras pesquisas apliquem o procedimento metodológico e a ferramenta 

computacional desenvolvida neste trabalho a um número maior de bacias hidrográficas brasileiras 

para que os resultados possam contribuir em uma análise mais abrangente sobre o impacto de 

diferentes estratégias de divisão de dados tem no ajuste de modelos hidrológicos.  
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