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Abstract: The identification of outliers in hydrological time series is essential to ensure the quality 

of forecasting models used for the prevention of extreme hydrological events. In this context, an 

algorithm is proposed for the automatic detection of contextual outliers in river level data from the 

Amazon basin, based on the identification of nearby stations and the use of regression methods with 

sliding windows. For the detection of point and collective outliers, eleven different methods are 

employed, relying on the detection of abrupt variations and the definition of thresholds. The 

performance of these methods is evaluated by counting correct classifications (true positives and true 

negatives) and errors (false positives and false negatives). This evaluation shows that most of the 

analyzed methods achieve accuracy rates above 90%. In addition, regression-based methods for 

correcting these outliers are presented. This approach contributes to the overall improvement of 

hydrological data quality and enhances the reliability of analyses and decisions based on these 

records. 

 

Resumo: A identificação de dados inconsistentes em séries temporais hidrológicas é imprescindível 

para garantir a qualidade dos modelos de previsão para prevenção de eventos hidrológicos extremos. 

Nesse contexto, é proposto um algoritmo para identificação automática de inconsistências contextuais 

em dados de nível de rios da bacia amazônica, considerando a identificação de estações próximas e 

métodos de regressão com janelas deslizantes. Para o caso das inconsistências pontuais e coletivas, 

utiliza-se 11 métodos distintos baseados na detecção de variações abruptas e na definição de limiares. 

O desempenho desses métodos é avaliado contabilizando os acertos (positivos verdadeiros e 

negativos verdadeiros) e erros (falsos positivos e falsos negativos). Essa avaliação mostra que a 

maioria dos métodos analisados apresenta eficiência acima de 90%. Além disso, são apresentados 

métodos de correção dessas inconsistências baseados em regressão. Essa abordagem contribui para a 

melhoria geral da qualidade dos dados hidrológicos e aumenta a confiabilidade das análises e decisões 

baseadas nesses registros. 
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INTRODUÇÃO 

A identificação de inconsistências em séries de dados hidrológicos é importante para garantir a 

qualidade dos mesmos. Isto, aprimora a gestão dos recursos hídricos e auxilia na prevenção e 

mitigação dos efeitos de desastres naturais (Pereira, Barbieiro e Quevedo, 2020). Os dados 

inconsistentes aparecem nas séries temporais de forma pontual e coletiva, e podem ser identificados 

por meio de métricas estatísticas convencionais, porém, em alguns casos mais complexos, se faz 

necessário comparar os dados da série temporal analisa com os dados advindos de estações de 

medição adjacentes. Nesse último caso, as inconsistências são chamadas de contextuais.  

As inconsistências nos dados podem ser causadas por erro humano, mal funcionamento dos 

sensores ou até obstruções no rio, quando se trata de dados de vazão. Jamshidi et al. (2021) estudaram 

a implementação de métodos de forma individual e combinada para este caso, concluindo uma menor 

eficiência no caso da aplicação dos métodos combinados, já que o aumento das detecções pode levar 

à propagação de erros. Bae e Ji (2019), por sua vez, se basearam na média móvel exponencialmente 

ponderada para promover a remoção desses dados e a suavização dos mesmos como forma de 

melhorar a qualidade dos dados de nível de córregos. Na aplicação do método, os autores 

determinaram o tamanho ideal da janela deslizante por meio da diferença relativa entre a mediana 

móvel e a média móvel após a remoção das inconsistências. Gleeson et al. (2023) destacam a 

necessidade de escolher um algoritmo que seja apropriado à distribuição dos dados. Nesse sentido, 

no estudo de inconsistências em dados de águas subterrâneas, Kim et al. (2022) avaliaram varias 

adaptações de métodos bastante utilizados para a identificação de inconsistências de forma a adequá-

los para distribuições de dados não-Gaussianas. 

Considerado as premissas supracitadas, diferentes métodos e combinações são analisados para 

identificação e correção de inconsistências pontuais, coletivas e contextuais. Por fim, para validação 

dos mesmos, os métodos são validados por meio da substituição de 10 observações por valores 

aleatórios. A eficiência de cada método é calculada considerando os conceitos de precisão e 

sensibilidade partindo das quantidades de falsos positivos, falsos negativos e positivos verdadeiros 

encontrados. 

 

METODOLOGIA 

A metodologia usa neste trabalho é apresentada na Figura 1 na forma de fluxograma dos 

procedimentos implementados neste estudo.  

 
Figura 1 - Fluxograma do estudo 

 
 

As etapas decorrentes para a implementação prática do fluxograma que representa a metodologia são 

apresentadas a seguir: 

 

i. Importação dos dados de nível fluviométrico; 

ii. Escolha do período de análise, em que não há inconsistências identificadas; 

iii. Substituição de pontos aleatórios por valores inconsistentes; 

iv. Aplicação dos métodos de identificação de inconsistências pontuais, coletivas e contextuais; 
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 v. Correção das inconsistências identificadas; 

vi. Avaliação dos resultados. 

 

A validação dos métodos de identificação de inconsistências pontuais e coletivas foi realizada 

a partir do cálculo de métricas como: Precisão, Sensibilidade, Eficiência. As métricas propostas 

consideram as quantidades de Falsos Positivos (FP), Falsos Negativos (FN) e Positivos Verdadeiros 

(TP), de acordo com as equações 1, 2 e 3. Já os métodos de identificação de inconsistências 

contextuais e de correção são validados visualmente nas estações hidrológicas de Manacapuru, 

Anamã Manaus em períodos distintos. 

 

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

(1) 

 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

(2) 

 

𝐸𝑓𝑖𝑐𝑖ê𝑛𝑐𝑖𝑎 = 2
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 × 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒
  

(3) 

 

 

Métodos Baseados no Cálculo de Limiares para Inconsistências Pontuais e Coletivas 

Os métodos reportados na literatura utilizam parâmetros da estatística descritiva para o cálculo 

de limiares, tal e como mostrado na Tabela 1. 

 
Tabela 1 - Métodos baseados em limiares 

Método Cálculo do Limiar Equação 

Z-Score Padrão (Jamshidi, et al., 2022) 𝑙𝑖𝑚𝑖𝑎𝑟 =   𝜇 ± 3𝜎  (4) 

Z-Score Modificado com decomposição 

(Jamshidi, et al., 2022) 
𝑙𝑖𝑚𝑖𝑎𝑟 = 𝑥̅ ±

3𝑀𝐴𝐷

0,6745
  (5) 

Z-Score Modificado* 

(Berendrecht, van Vliet e Griffioen, 2023) 
𝑙𝑖𝑚𝑖𝑎𝑟 = 𝑟̅ ± 3,7599𝑀𝐴𝐷  (6) 

Z-Score com Média Móvel Exponencial 

(Jamshidi, et al., 2022) 
𝑙𝑖𝑚𝑖𝑎𝑟 = 𝑀𝑀𝐸 ±

3𝑀𝐴𝐷

0,6745
  (7) 

Intervalo Interquartílico 

(Tukey, 1977) 

𝑙𝑖𝑚𝑖𝑎𝑟𝑠𝑢𝑝 = 𝑄3 + 1,5 × 𝐼𝑄𝑅  

𝑙𝑖𝑚𝑖𝑎𝑟𝑖𝑛𝑓 = 𝑄1 − 1,5 × 𝐼𝑄𝑅  

(8) 

(9) 

Intervalo Interquartílico Modificado 

(Jeong, et al., 2017) 

𝑙𝑖𝑚𝑖𝑎𝑟𝑠𝑢𝑝 = 𝜇 + 𝑄3 + 1,5 × 𝐼𝑄𝑅  

𝑙𝑖𝑚𝑖𝑎𝑟𝑖𝑛𝑓 = 𝜇 − 𝑄1 − 1,5 × 𝐼𝑄𝑅  

(10) 

(11) 

Sigma Modificado 

(Kim, et al., 2022) 

𝜎𝑢𝑝 = min (𝑓𝑢𝑝 − 𝜇)  

𝜎𝑙𝑜𝑤 = min (𝜇 − 𝑓𝑙𝑜𝑤)  

𝑙𝑖𝑚𝑖𝑎𝑟𝑠𝑢𝑝 = 𝜇 + 3𝜎𝑢𝑝   

𝑙𝑖𝑚𝑖𝑎𝑟𝑠𝑢𝑝 = 𝜇 − 3𝜎𝑙𝑜𝑤   

(12) 

(13) 

(14) 

(15) 

 

Em que, 𝜇, 𝜎, 𝑥,̅ 𝑄1 , 𝑄3 são a média, o desvio, a mediana, o primeiro e terceiro quartil das medições, 

respetivamente. 𝑟̅ é a mediana dos resíduos entre as medições e as médias locais. 𝑀𝐴𝐷 é desvio 

absoluto mediano. 𝐼𝑄𝑅 é o intervalo interquartílico (𝑄3 − 𝑄1. 𝑓𝑢𝑝 e 𝑓𝑙𝑜𝑤 são os vetores com valores 

correspondentes aos pontos superior e inferior no intervalo quantílico [0,5, 0,95]. 𝜎𝑢𝑝 e 𝜎𝑙𝑜𝑤 são os 

graus de dispersão direcional. 

 

Métodos Baseados na Cálculo da Variação para Inconsistências Pontuais e Coletivas 
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 Esses métodos utilizam a primeira e a segunda derivada para detectar variações abruptas nos 

dados, que indicariam que os dados são inconsistentes. A primeira derivada é usada para medição da 

variação dos dados, e a segunda derivada identifica as variações abruptas. É definido o limite de 20 

cm/dia2 para essa análise. 

A técnica das janelas deslizantes é utilizada para avaliar padrões locais e aumentar a 

sensibilidade da detecção de inconsistências. A série temporal foi dividida em janelas de 15 dias com 

passo de 7 dias para garantir a sobreposição das janelas para uma análise mais precisa (Yu et al., 

2014). 

Além disso, utilizou-se o desvio absoluto mediano (MAD) como medida de dispersão dos dados 

na forma de uma terceira modificação do Z-Score de acordo com a equação (16). Para o dado ser 

considerado inconsistente é necessário escolher um critério de rejeição para Mi. Os valores sugeridos 

são: 3 (muito conservador), 2,5 (moderadamente conservador) e 2 (pouco conservador). Neste 

trabelho, valores acima de 2,5 são considerados como inconsistentes. 

 

𝑀𝑖 =
|𝑥𝑖−𝑥̅|

MAD
  (16) 

 

Para garantir maior robustez, utiliza-se o estimador 𝑆𝑛, de acordo com a equação (17), em 

conjunto com a aplicação do Z-Score Modificado às segundas derivadas, conforme descrito na 

equação (18) (Rousseeuw e Croux, 1993).  

𝑆𝑛 = 1,1926(|𝑥𝑖 − 𝑥𝑗|)  
(17) 

 

𝑍𝑖 =
|𝑑𝑖−𝑑̅|

𝑆𝑛
  

(18) 

 

Esses métodos são empregados em diferentes combinações: derivada, janela deslizante com 

MAD nas medições, janela deslizante com MAD na derivada, janela deslizante com Sn na derivada. 

 

Métodos para Identificação de Inconsistências Contextuais 

Para a identificação de inconsistências contextuais se faz necessário identificar as estações de 

medição próximas à estação de interesse, o que é feito por meio das coordenadas geográficas de 

acordo com a equação de Haversine, descrita na equação (19). 

 

𝑑 = 2𝑟 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 (
𝑙𝑎𝑡2−𝑙𝑎𝑡1

2
) + cos(𝑙𝑎𝑡1) cos(𝑙𝑎𝑡2) 𝑠𝑖𝑛2 (

𝑙𝑜𝑛𝑔2−𝑙𝑜𝑛𝑔1

2
) )  (19) 

 

Onde, 𝑑 é a distância entre os dois pontos geográficos, 𝑟 é o raio da Terra em km, 𝑙𝑎𝑡1 e 𝑙𝑎𝑡2 

são as latitudes dos pontos em radianos. 𝑙𝑜𝑛𝑔1 e 𝑙𝑜𝑛𝑔2 são as longitudes dos pontos em radianos. 

Tal inconsistência é identificada quando um segmento da série temporal da estação em análise, 

devidamente ajustado no tempo, apresenta comportamento discrepante em relação às séries temporais 

de estações de medição adjacentes.  

A abordagem proposta envolve, também, a aplicação de janelas deslizantes junto ao coeficiente 

de correlação de Pearson e do coeficiente angular da regressão linear. O coeficiente de correlação 

pode ser incorporado como um parâmetro no método da janela deslizante para investigar a correlação 

entre as curvas de estações adjacentes. Essa aplicação requer a definição de um limite inferior para a 

correlação entre as curvas, sendo que janelas que exibem correlação acima desse limite são 

identificadas como inconsistentes. As janelas que exibem coeficiente de correlação acima de 0,3 são 

consideradas inconsistentes.  
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 Uma maneira convencional de saber como um dado se relaciona com outro, é calcular a 

regressão linear entre eles. É possível assumir que o coeficiente angular da regressão entre duas 

estações adjacentes sofre pouca alteração ao longo da série temporal. Portanto, podemos usar a janela 

deslizante ao longo da série temporal para avaliar a variação do coeficiente angular da regressão 

linear, e definir como inconsistente uma janela em que o coeficiente angular apresenta uma grande 

variação em relação a série inteira. 

O método do coeficiente angular consiste no cálculo dos coeficientes da regressão linear entre 

duas estações adjacentes (𝑏1) e dentro de cada janela (𝑎1). Calcula-se o ângulo entre as duas 

regressões de acordo com a equação (20). Se o ângulo calculado for acima de 15, a janela é 

considerada inconsistente.  

 
𝛼 = tan−1(𝑏1) − tan−1(𝑎1)  (20) 

 

Métodos de correção de inconsistências 

Para o caso de inconsistências pontuais e coletivas consiste em eliminar as janelas consideradas 

inconsistentes e substituir esses dados pela técnica de spline cúbica e de regressão polinomial. Esses 

métodos são comparados em relação ao coeficiente de determinação r2. 

Para as inconsistências contextuais se faz necessário usar dados da estação adjacente para 

corrigir os dados por meio de interpolação e regressão com defasagem temporal. Considerando a 

correlação entre as estações de medição, é possível estimar um valor por meio da medição tomada 

em uma estação próxima. Entretanto, um evento que ocorre em uma estação só faz efeito na estação 

a jusante depois de um determinado tempo. Para estimar a melhor defasagem entre os dados das 

estações, utiliza-se o coeficiente de correlação linear. Tendo o intervalo em que há o maior coeficiente 

de correlação, emprega-se a regressão aos dados defasados para estimar os dados da estação de 

referência. 

 

RESULTADOS 

A eficiência dos métodos de identificação de inconsistências pontuais e coletivas é apresentado 

no gráfico da Figura 2.  

 
Figura 2 - Eficiência dos métodos utilizados para identificação de inconsistências pontuais e coletivas 

 
 

Os métodos apresentados são: intervalo interquartílico modificado (iqrm), intervalo 

interquartílico (iqr), z-score padrão (zp), sigma modificado (sm), z-score modificado* (z*), z-score 

modificado (zm), z-score com média móvel exponencial (zmme) e derivada (deriv). 



                                                                              

XXVI Simpósio Brasileiro de Recursos Hídricos (ISSN 2318-0358) 6 

 

 

 

 

 Os resultados dos testes indicam que a maioria dos métodos apresentam respostas confiáveis, 

com eficiência acima de 90%, com boa precisão e sensibilidade. A baixa precisão do z-score com 

média móvel exponencial, é possivelmente causada pela grande incidência de falsos positivos, o que 

sugere a necessidade de uma adaptação para que o método se adeque aos dados estudados. 

A Figura 3 mostra os resultados obtidos para correção de inconsistências pontuais e coletivas 

por spline cúbica e regressão polinomial da estação de Anamã. A figura 3(a) apresenta a correção dos 

dados com regressão polinomial. A Figura 3(b) mostra correção dos dados com spline cúbica. A 

Figura 3(c) apresenta a correção dos dados com regressão polinomial. A Figura 3(d) mostra a correção 

dos dados com spline cúbica. 
 

Figura 3. Correção de inconsistências pontuais e coletivas por Spline Cúbica e Regressão Polinomial da estação de 

Anamã 

  
(a) (b) 

  
(c) (d) 

 

Os resultados dos cálculos para o coeficiente de determinação decorrentes da correção de 

inconsistências pontuais e coletivas por Spline Cúbica e Regressão Polinomial da estação de Anamã 

são apresentados na Tabela 2.  

Tabela 2 – Cálculo do r2 para a Spline Cúbica e Regressão Polinomial 

Pontos Método 
Regressão 

grau 2 (%) 

Regressão  

grau 3 (%) 

Regressão  

grau 4 (%) 

10 Em relação com a Spline 99,5434 99,5859 98,1023 

10 regressão 99,9943 99,9958 99,9980 

20 Em relação com a Spline 99,7254 99,6680 99,2392 

20 regressão 99,9195 99,9916 99,9922 

40 Em relação com a Spline 99,7820 99,6240 99,9224 

40 regressão 99,8293 99,9794 99,9871 
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 Para a regressão com 10 pontos totais, é possível ver que a regressão de 4° grau se aproxima 

melhor dos dados originais, mas se afasta do resultado da Spline cúbica. Enquanto as regressões de 

grau 2 e 3 se aproximam tanto dos dados originais quanto da Spline cúbica. Já com 20 pontos, em 

relação ao caso anterior, o r2 em relação ao dado original para todas as regressões diminuiu. Porém, 

todos as correções se aproximaram da Spline cúbica, com um aumento significativo no r2 da regressão 

de grau 4. Com 40 pontos utilizados para a regressão, as curvas se afastaram mais do dado original, 

gerando uma descontinuidade no gráfico da regressão de 2° grau, mesmo com uma proximidade 

maior ao resultado da Spline cúbica. Os resultados anteriores são ilustrados na Figura 4. A Figura 

4(a) regressão com 10 pontos totais; 4(b) regressão com 20 pontos e 4(c) regressão com 40 pontos.  

Figura 4 - Correção de inconsistências pontuais e coletivas com diferentes quantidades de pontos 

  
(a) (b) 

 

 

(c)  

 

Na Figura 5, são apresentados os resultados da detecção de inconsistências contextuais. Três 

segmentos das series temporais da estação de Manacapuru foram avaliados com os dados da serie 

temporal da estação adjacente de Manaus. É possível notar visualmente nas Figuras 4(a), 4(b) e 4(c), 

as diferenças entre as séries temporais no trecho indicado como inconsistente, comprovando a 

coerência dos resultados obtidos. 

 
Figura 5 - Detecção de inconsistências contextuais 
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Os resultados obtidos para correção de inconsistências contextuais, por sua vez, são 

apresentados na Figura 6, que compara a correção com e sem defasagem temporal. Figura 6(a) 

correção por regressão com defasagem temporal em Anamã (2010). Figura 6(b) correção sem 

defasagem em Anamã (2010). Figura 6(c) correção com defasagem para Manacapuru (1992). Figura 

6(d) correção sem defasagem para Manacapuru (1992). Nota-se que os dois casos apresentam bons 

resultados, mas com melhor ajuste quando se considera defasagem temporal. 

Figura 6 - Correção de inconsistências contextuais com e sem defasagem temporal 

  
(a) (b) 

  
(c) (d) 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  
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CONSIDERAÇÕES FINAIS 

Por meio da validação proposta, foi possível provar a eficácia dos métodos para a identificação 

de inconsistências em séries temporais de dados hidrológicos, destacando-se como ferramentas 

indispensáveis para garantir a confiabilidade dos dados. 

Na análise comparativa, notaram-se as elevadas sensibilidade e precisão da maioria dos 

métodos, resultando em uma alta eficiência. A exceção é o z-score combinado com média móvel 

exponencial, provando que o uso de métodos combinados pode levar à propagação de erros, a notar 

pela grande quantidade de falsos positivos. Para este caso indica-se a necessidade de ajustes para que 

a técnica seja aplicável aos dados estudados. 

Quanto à correção de inconsistências pontuais, a análise comparativa entre as técnicas de 

correção utilizando regressão polinomial e Spline Cúbica. A análise revela que cada abordagem 

possui vantagens e limitações que devem ser consideradas. A Spline Cúbica demonstra maior 

consistência na suavização e correção das inconsistências, já que essa técnica garante continuidade 

nos dados. As regressões polinomiais também mostram capacidade de ajuste dos dados, se 

aproximando da correção com Spline Cúbica. Porém, ao utilizar um maior número de pontos no 

modelo, podem gerar descontinuidades que podem comprometer a qualidade da correção. 

A correção de inconsistências contextuais apresentou bons resultados com os dois métodos 

propostos, mas com maior suavidade do ajuste na análise com defasagem temporal. 
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