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Abstract: Historical streamflow series are essential for water resource management, especially for 

calculating reference flows such as Q7.10, Q90, Q95, and Qmld, used in the allocation, licensing, and 

protection of multiple water uses. However, these series often present gaps due to operational, 

technical, or logistical problems. This study investigated the impact of filling gaps in streamflow 

series on the accuracy of reference flows in the Doce River basin, southeastern Brazil. Using daily 

data from 11 fluviometric stations with complete 30-year series (1994–2023), gaps of 5% to 50% 

were simulated, applying five imputation methods: moving average (MM), simple linear regression 

(RL), MissForest (MF), K-Nearest Neighbors (KNN), and Multiple Imputation by Chained Equations 

(MICE). The quality of the imputations was assessed by the metrics R², PBIAS, and RMSE. The 

results demonstrated that the MICE algorithm performed better in recovering missing values. 

Furthermore, the comparative analysis of the calculation of reference flows using complete, faulty 

and filled series indicated that there was no statistical difference in the flow values obtained. This 

shows that for the historical series analyzed, the presence of gaps does not cause major losses in 

obtaining reference flows. 

 

Resumo: As séries históricas de vazão são fundamentais para a gestão de recursos hídricos, 

especialmente no cálculo das vazões de referência como Q7,10, Q90, Q95 e Qmld, utilizadas na alocação, 

licenciamento e controle dos usos múltiplos da água. No entanto, é comum que essas séries 

apresentem falhas devido a problemas operacionais, técnicos ou logísticos. Este estudo investigou o 

impacto do preenchimento de falhas em séries históricas de vazão sobre a acurácia das vazões de 

referência na bacia do rio Doce, sudeste do Brasil. Utilizando dados diários de 11 estações 

fluviométricas com séries completas de 30 anos (1994–2023), foram simuladas falhas de 5% a 50%, 

aplicando-se cinco métodos de imputação: média móvel (MM), regressão linear simples (RL), 

MissForest (MF), K-Nearest Neighbors (KNN) e Multiple Imputation by Chained Equations (MICE). 

A qualidade das imputações foi avaliada pelas métricas R2, PBIAS e RMSE. Os resultados 

demonstraram que o algoritmo MICE apresentou melhor desempenho na recuperação de valores 

ausentes. Ademais, a análise comparativa das vazões de referência estimadas utilizando séries 

completas, com as vazões estimadas a partir das séries com falhas e preenchidas indicou que não 

houve diferença estatística nos valores de vazões obtidos. Isso mostra que para as séries históricas 

analisadas, a presença de falhas não causa grandes prejuízos na obtenção de vazões de referência. 
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 1. INTRODUÇÃO 

As séries históricas de vazão constituem a base para uma ampla gama de aplicações na 

hidrologia e na gestão dos recursos hídricos, incluindo o dimensionamento de estruturas hidráulicas, 

o planejamento do uso da água, a avaliação de disponibilidade hídrica e a definição de vazões de 

referência para fins ambientais e legais (Ibiapina et al., 2003; Tucci, 2009). A qualidade e a 

continuidade dessas séries são, portanto, essenciais para assegurar a confiabilidade das análises 

hidrológicas (Vieira et al., 2018). No entanto, é comum a ocorrência de dados faltantes nas séries 

históricas de vazão, em decorrência de falhas nos sensores, problemas de operação das estações 

hidrométricas ou dificuldades logísticas na coleta e transmissão dos dados ou erros obtidos ao anotar 

ou observar os dados (Sharma e Yuden, 2021). 

A presença de lacunas nas séries históricas de vazões pode comprometer a confiabilidade de 

indicadores da disponibilidade hídrica em uma bacia hidrográfica (Giustarini et al., 2016; Tencaliec 

et al., 2015). Segundo Serrano (2020), a disponibilidade hídrica pode ser estimada por diferentes 

metodologias, sendo normalmente quantificada por meio de algumas vazões de referência, que são 

utilizadas na gestão de recursos hídricos. As vazões de referência mais utilizadas pelos órgãos 

gestores de recursos hídricos no Brasil são a vazão mínima com média de sete dias consecutivos e 

período de retorno de 10 anos (Q7,10), as vazões associadas às permanências de 90 e 95% no tempo 

(Q90 e Q95) (Lelis et al., 2020) e a vazão média de longa duração (Qmld). 

A fim de superar a presença de falhas nos dados de vazão, diversas abordagens têm sido 

propostas para o preenchimento de lacunas em séries hidrológicas, variando desde modelos lineares 

simples a técnicas determinísticas ou estocásticas complexas (Dembélé et al. 2019). Atualmente 

ganha destaque técnicas baseadas em aprendizado de máquina, como Random Forest, K-Nearest 

Neighbors (KNN) e redes neurais artificiais (Beguería et al., 2019; Kim e Pachepsky, 2010; 

Stekhoven e Buhlmann, 2012). Estudos comparativos revelaram que os métodos podem superar uns 

aos outros dependendo do conjunto de dados utilizado (Campozano et al., 2014; Harvey et al., 2012). 

Contudo, embora muitos estudos se concentrem na acurácia da imputação dos dados em si, 

ainda são limitadas as investigações que avaliam o impacto da utilização de séries históricas com 

falhas e preenchidas sobre o cálculo da Q7,10, Q90, Q95 e Qmld. Essa lacuna é particularmente relevante, 

considerando a importância desses valores na gestão integrada de recursos hídricos. Nesse contexto, 

o presente trabalho busca testar diferentes técnicas de preenchimento de dados faltantes para 

completar as séries históricas de vazão, avaliando o impacto do preenchimento de falhas das séries 

históricas no valor calculado das vazões de referência Q7,10, Q90, Q95 e Qmld. 

 

2. MATERIAL E MÉTODOS 

2.1. Área de estudo 

A área de estudo foi a bacia hidrográfica do rio Doce (Figura 1), localizada na região sudeste 

do Brasil, com extensão de aproximadamente 82.427 km2 (ANA, 2018). Os climas predominantes na 

bacia, de acordo com a classificação de Köppen, são o tropical de monções com inverno seco (Aw); 

o subtropical úmido com inverno seco e verão quente (Cwa); e o subtropical úmido com inverno seco 

e verão ameno (Cwb) (Alvares et al., 2013). A precipitação média anual é de cerca de 1.200 mm 

(Lima et al., 2019), e o ano hidrológico é dividido em duas estações: seca, com 150 a 250 mm de 

chuva (abril a setembro) e chuvosa, com 800 a 1.300 mm (outubro a março) (ECOPLAN-LUME, 

2010). 
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Figura 1 - Mapa de localização e estações fluviométricas da bacia hidrográfica do rio Doce. 

 

2.2. Dados de vazão 

O inventário de estações fluviométricas da Agência Nacional de Águas e Saneamento Básico 

(ANA), disponível nos metadados da agência (ANA, 2023), aponta 562 estações para a bacia do rio 

Doce (Figura 1), porém nem todas possuem dados disponíveis. Foi feito o download automático das 

séries históricas de vazões das estações presentes na bacia utilizando uma rotina em Python capaz de 

acessar e baixar os dados disponíveis no Hidroweb (https://www.snirh.gov.br/hidroweb) e organizá-

los em um Dataframe. 

Para a realização do estudo foi adotado um período base de 30 anos de dados diários de vazão, 

de outubro de 1994 a setembro de 2023, considerando o ano hidrológico na bacia que é de outubro a 

setembro (CPRM, 2014; IGAM, 2015; Marques, 2010). Utilizaram-se os dados brutos e consistidos 

para representar a realidade hidrológica atual da bacia, assim como feito por Ferreira et al. (2021). 

Foram utilizadas no estudo apenas as estações que não apresentaram falhas no período adotado, 

resultando em 11 estações (Tabela 1). 

Tabela 1 - Lista das estações selecionadas para o estudo. 

Código 
Latitude 

(º) 

Longitude 

(º) 
Rio 

Área de 

drenagem (km2) 

56075000 -20,67 -43,09 Rio Piranga 4260 

56110005 -20,38 -42,90 Rio Piranga 6230 

56385000 -20,70 -42,67 Rio Casca 523 

56425000 -19,99 -42,67 Rio Doce 10100 

56825000 -19,19 -42,42 Rio Santo Antônio 10200 

56870000 -18,20 -42,45 Rio São Félix 622 

56891900 -18,57 -41,92 Rio Suaçuí Grande 9770 

56960005 -20,17 -41,96 Rio Manhuaçú 1070 

56983000 -20,11 -41,73 Rio José Pedro 384 

56991500 -19,90 -41,06 Rio Guandú 1330 

56994500 -19,53 -40,63 Rio Doce 76400 
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 2.3. Avaliação dos métodos de preenchimento de falhas 

2.3.1. Geração de dados faltantes nas séries históricas de vazão 

Nas séries históricas das 11 estações fluviométricas adotadas, as quais não apresentaram falhas 

no período adotado, foram gerados aleatoriamente dados faltantes, com percentuais de falhas de 5%, 

10%, 20%, 30%, 40% e 50% em cada estação. Esse procedimento permitiu avaliar o desempenho das 

técnicas de imputação de dados em função da variação na quantidade de falhas presentes nas séries. 

 

2.3.2. Métodos de preenchimento de falhas utilizados 

Para fins de comparação foram utilizados cinco métodos de preenchimento de falhas: a Média 

Móvel (MM); a Regressão Linear Simples (RL); o algoritmo MissForest (MF); o algoritmo K-Nearest 

Neighbors (KNN); e o algoritmo Multiple Imputation by Chained Equations (MICE). 

O método da Média Móvel (MM) foi aplicado semelhante ao que foi feito no estudo de Ventura 

et al. (2016). A MM realiza a média aritmética de uma série de valores anteriores à falha. Neste 

trabalho utilizou-se uma janela de sete dias, o que significa que para preencher uma determinada falha 

foram utilizados os últimos sete valores de vazão da própria série histórica para realização da média. 

Nos casos em que houver falhas dentro da janela de sete dias, a média é feita com os valores 

disponíveis. É importante ressaltar que a média móvel se torna inviável para preenchimento de séries 

com elevado número de falhas consecutivas, pois pode ocorrer de não haver nenhum valor disponível 

dentro da janela adotada para realizar a média e, consequentemente o preenchimento do dado faltante. 

A Regressão Linear Simples (RL) é um método comumente utilizado (Alley; Burns, 1983; 

Beyad; Maeder, 2013; Mfwango et al., 2018) para preenchimento de dados hidrometeorológicos e 

consiste em correlacionar a estação que se deseja realizar o preenchimento de falhas com as demais 

estações de apoio disponíveis, gerando um ranking de estações mais correlacionadas. A estação de 

apoio que resultou no maior coeficiente de correlação (r) com a estação alvo foi utilizada para ajustar 

uma equação de regressão linear. Dessa forma o valor faltante foi determinado aplicando-se a equação 

de regressão ajustada, utilizando como variável independente o valor de vazão da estação de apoio 

na mesma data de ocorrência da falha. Quando a estação de apoio apresentou falhas na mesma data 

da estação alvo, utilizou-se a próxima estação de apoio com maior correlação para ajuste da equação. 

O MissForest (MF) é um algoritmo de aprendizado de máquina não paramétrico desenvolvido 

por Stekhoven e Buhlmann (2012). O MF utiliza o algoritmo Random Forest para treinar 

iterativamente um modelo que considera o conjunto de estações fluviométricas como variáveis e 

realiza a predição dos valores faltantes. Para cada estação com falhas, o algoritmo construiu uma 

floresta aleatória usando as outras estações como variáveis preditoras. A floresta aleatória foi ajustada 

apenas com os valores observados (não faltantes). Após o treinamento das árvores de regressão os 

valores faltantes da estação em questão foram preenchidos com as previsões geradas pelo modelo. 

O KNN é um dos métodos mais utilizados para preenchimento de falhas em séries de dados 

hidrometeorológicos (Beguería et al., 2019; Lepot et al., 2017). Este método utiliza as estações 

vizinhas mais próximas para preencher lacunas na estação com dados faltantes e imputa valores 

faltantes usando a média ponderada das estações vizinhas (Martins et al., 2023). Neste estudo o 

número de vizinhos adotados foi K=5, conforme feito por Martins et al. (2023), e a medida para 

identificar as estações vizinhas foi a distância euclidiana. Dessa forma, considerando os valores das 

séries históricas das estações para a mesma data calculou-se a distância entre os dados da estação com 

falha e das demais estações. As cinco estações que apresentaram menor distância foram selecionadas 

para realizar o preenchimento. Os valores conhecidos de vazão dos K-vizinhos mais próximos na 
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 mesma data da ocorrência da falha foram utilizados para preencher o valor ausente a partir da média 

ponderada pela distância, em que o maior peso é atribuído à estação mais próxima. 

O MICE (Van Buuren, 1999) é uma abordagem prática para lidar com dados ausentes. O 

método demonstrou funcionar bem em diversas aplicações hidrológicas e teve melhor desempenho 

do que outros métodos (Ekeu-wei et al., 2018; Little, 1992; Sidibe et al., 2018). Para realizar a 

imputação utilizando o método MICE, o algoritmo executou as seguintes etapas, conforme descrito 

por Azur et al. (2011): inicialmente, definiu-se o número de iterações (K). Em seguida, para cada 

estação, substituíram-se os valores ausentes por uma estimativa inicial, como a média dos valores não 

ausentes dessa coluna, o que resultou em um conjunto de dados sem falhas temporariamente. 

Posteriormente, para preencher os dados da primeira estação, o valor imputado foi novamente 

marcado como ausente, e um modelo de regressão foi construído para prever os dados da estação em 

questão utilizando as demais como preditoras, considerando apenas as linhas onde a estação a ser 

preenchida não possuía dados ausente. Esse modelo foi então utilizado para prever os valores ausentes 

da primeira estação. O mesmo processo foi repetido para as outras estações, completando uma 

iteração de previsões. Esse procedimento foi repetido para K iterações, com os valores previstos em 

cada iteração sendo progressivamente aprimorados. Ao final da K-ésima iteração, a última previsão 

para cada estação foi mantida como valor preenchido. 

 

2.3.3. Métricas de avaliação 

Para a avaliação do desempenho das técnicas de preenchimento adotadas, foram consideradas 

as seguintes métricas estatísticas: Coeficiente de determinação (R2); Viés percentual (PBIAS); e Raiz 

quadrada do erro médio (RMSE). A classificação qualitativa dos modelos foi realizada com base nas 

faixas dos valores dos indicadores estatísticos, conforme indicado por Moriasi et al. (2015) e 

apresentadas na Tabela 2. 

Tabela 2 - Classificação qualitativa dos indicadores estatísticos. 

Indicador 
Critérios de avaliação de desempenho 

Muito bom Bom Satisfatório Insatisfatório 

R 2 > 0,85 0,75 < R2 ≤ 0,85 0,60 < R2 ≤ 0,75 R2 ≤ 0,60 

PBIAS (%) < ±5 ±5 < PBIAS ≤ ±10 ±10 < PBIAS ≤ ±15 PBIAS ≥ ±15 

Fonte: Adaptado de Moriasi et al. (2015). 

O RMSE foi considerado satisfatório quando o seu valor foi abaixo da metade do desvio padrão 

dos dados observados, conforme utilizado por Singh et al. (2005). 

 

2.4. Avaliação do impacto do preenchimento no valor das vazões de referência 

2.4.1. Simulação de falhas 

Para este trabalho, consideraram-se as vazões de referência a vazão mínima da média de sete 

dias consecutivos e período de retorno de dez anos (Q7,10), as vazões com 90 e 95% de permanência 

(Q90 e Q95, respectivamente) e a vazão média de longa duração (Qmld), uma vez que estas são as mais 

utilizadas pelos órgãos gestores de recursos hídricos no Brasil (Lelis et al., 2020). 

Para avaliar a qualidade e, até mesmo a necessidade, do preenchimento de falhas nas séries 

históricas de vazões diárias para determinação das vazões de referências Q7,10, Q90, Q95 e Qmld, foi 
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 feito o cálculo das vazões para: as séries completas de dados; as séries com exclusão de dados 

faltantes; e as séries contendo valores preenchidos pelo método que apresentou melhor desempenho 

na etapa anterior. Na sequência foi verificado se os valores obtidos de vazões de referência diferem 

estatisticamente entre si. 

Primeiramente foram calculadas as vazões de referência para as séries com os dados completos. 

Na sequência, para cada estação, foram geradas lacunas nos dados em um percentual de 10% 

distribuídos aleatoriamente nos meses do período seco (abril a setembro), pois as vazões neste período 

são as que, de fato, influenciam no cálculo das vazões mínimas. Foram feitas 4 simulações distintas, 

S1, S2, S3 e S4, correspondendo a geração dos 10% de falhas no período seco em 5, 10, 15 e 20 anos 

de dados, respectivamente. Os anos com dados faltantes foram excluídos e os valores das vazões de 

referência foram recalculados. Por último, as falhas geradas na etapa anterior foram preenchidas pelo 

método de melhor desempenho e, para a série completa com os dados preenchidos, as vazões de 

referência foram novamente determinadas. 

 

2.4.2. Verificação estatística dos valores obtidos 

Para cada uma das simulações (S1, S2, S3 e S4) foram estimados os valores das vazões de 

referência na condição de dados completos, dados com exclusão de anos faltantes e dados com 

preenchimento das falhas. Foi feita uma comparação estatística entre as vazões de referência obtida 

com os dados completos e as vazões determinadas nas outras duas condições para verificar se estes 

diferem estatisticamente. 

Primeiramente a distribuição dos dados de vazões de referência foi avaliada utilizando-se o 

teste de Shapiro-Wilk (Shapiro; Wilk, 1965) que, para todos os casos, apontou que os dados não 

seguem uma distribuição normal. Com isso, utilizou-se o teste não paramétrico de Man-Whitney 

(Mann; Whitney, 1947) para comparação estatística dos valores. Para a realização dos testes foi 

adotado um nível de significância (α) de 5% (0,05), conforme feito por Kiely (1999). A interpretação 

dos testes é feita com base no valor de probabilidade (p-value) que, se for menor que α (p-value < 

0,05) rejeita-se a hipótese nula (H0) de que os dados seguem uma distribuição normal, no caso do 

teste de Shapiro-Wilk, e de que não há diferença significativa entre as amostras, no caso do teste de 

Mann-Whitney. 

 

3. RESULTADOS E DISCUSSÃO 

3.1. Análise dos métodos de preenchimento de falhas 

A Figura 2-a apresenta os valores do coeficiente de determinação (R2) obtidos para cada método 

de preenchimento de falhas adotado variando o percentual de dados faltantes. Observa-se que todos 

os métodos, avaliando o valor de R2, tiveram desempenhos classificados como Bom ou Muito bom, 

com R2 acima de 0,75 e na maioria dos casos acima de 0,85. 

Os métodos Média Móvel (MM) e Regressão Linear Simples (RL), avaliando o valor de R2, 

não apresentaram grande variação no desempenho à medida que o percentual de falhas aumentou. 

Por outro lado, os métodos de aprendizado de máquina, MissForest (MF) e K-Nearest Neighbors 

(KNN), apesar de apresentarem desempenho superior aos anteriores para baixos percentuais de 

falhas, decairam à medida que o número de falhas aumentou. Possivelmente isso ocorre, pois estes 

modelos precisam de uma quantidade elevada de dados para realizar a etapa do treinamento e 

aprender o comportamento da variável. Um número de amostras de treinamento pequeno pode 

prejudicar a capacidade de tomada de decisão dos algoritmos de aprendizado de máquina (Millard; 
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 Richardson, 2015). O algoritmo Multiple Imputation by Chained Equations (MICE) apresentou 

maiores valores de R2 em praticamente todos os percentuais de falhas, apresentando um decaimento 

menor no desempenho com o aumento de dados faltantes. 

A Figura 2-b apresenta os valores da Raiz quadrada do erro médio (RMSE). Semelhante ao que 

foi observado para o R2, os métodos MM e RL, avaliando o valor do RMSE, não apresentaram grande 

variação no desempenho à medida que o percentual de falhas aumentou, no entanto, apresentaram 

erros maiores que os demais métodos principalmente para percentuais de falhas mais baixos. Para 

percentuais de falhas acima de 20 e 30%, o KNN e o MF, respectivamente, apresentaram maiores 

valores de RMSE do que a RL e a MM. Até 10% de falhas, o MF apresentou RMSE menor que o 

MICE, embora tenham sido valores muito próximos. A partir de 10% de dados faltantes, o MICE 

teve erros aumentando progressivamente, no entanto, em valores absolutos menores que os demais 

métodos para o mesmo percentual de falhas. 

Na Figura 2-c é apresentada a tendência dos métodos de preenchimento de sub ou superestimar 

os dados. O MF e o KNN subestimaram os dados em todas as situações, chegando a apresentar valores 

acima de 12%, que ainda assim são classificados como satisfatório para este índice. Os demais 

métodos tiveram, em todas as situações, considerando a métrica PBIAS, desempenho classificado 

como muito bom. 

Figura 2 - Indicadores estatísticos por método de preenchimento e diferentes percentuais de falhas: a) Coeficiente de 

determinação (R2); b) Raiz quadrada do erro médio (RMSE); e c) Viés percentual (PBIAS). 

 
RL - Regressão Linear Simples; MF - algoritmo MissForest; MM - Média Móvel; KNN - algoritmo K-Nearest Neighbors; e MICE - Multiple Imputation 

by Chained Equations. 
 

Com base nas métricas analisadas, pode-se perceber que o método MICE apresentou melhor 

desempenho e maior estabilidade para realizar o preenchimento de falhas nas estações consideradas, 

resultado que corrobora com os obtidos por Sidibe et al. (2018). Segundo o mesmo autor, apesar do 

MICE muitas vezes fornecer estimativas melhores do que o MF, este último pode ser mais apropriado 

no contexto de mudanças de regimes hidrológicos, devido à sua capacidade de capturar relações não 

lineares complexas. 

 

3.2. Análise do impacto do preenchimento no valor das vazões de referência 
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 Na Tabela 3 são apresentados os resultados do teste de Mann-Whitney, sendo possível verificar 

que para todas as comparações feitas em todas as simulações o p-value apresentou valor maior do 

que o nível de significância (0,05), indicando que não foi observada diferença estatística entre os 

valores de vazões de referência calculados para as séries históricas com dados completos em 

comparação com as vazões obtidas para as séries com dados descartados e preenchidos. 

Tabela 3 - Resultados do teste de Mann-Whitney. 

Vazão Comparação 
S1   S2   S3   S4 

MW p-value   MW p-value   MW p-value   MW p-value 

Q7,10 C vs F 58.0 0.896  59.0 0.948  57.0 0.844  54.0 0.694 

Q7,10 C vs P 59.5 0.974  61.0 1.000  60.0 1.000  61.0 1.000 

Q90 C vs F 67.0 0.694  67.0 0.694  63.0 0.896  66.0 0.743 

Q90 C vs P 60.0 1.000  60.0 1.000  59.5 0.974  60.0 1.000 

Q95 C vs F 68.0 0.646  63.0 0.896  61.0 1.000  62.5 0.922 

Q95 C vs P 59.5 0.974  58.5 0.921  57.0 0.844  57.0 0.844 

Qmld C vs F 66.0 0.743  66.0 0.743  66.0 0.743  63.0 0.896 

Qmld C vs P 61.0 1.000   59.0 0.948   60.0 1.000   61.0 1.000 
C - Série com dados completos; F - Série com remoção dos anos com falhas (que foram geradas); P - Série com dados faltantes preenchidos; MW - 

Estatística do teste de Mann-Whitney; S1 - Simulação com geração de falhas em 5 anos de dados; S2 - Simulação com geração de falhas em 10 anos 

de dados; S3 - Simulação com geração de falhas em 15 anos de dados; e S4 - Simulação com geração de falhas em 20 anos de dados. 

Em termos práticos, os resultados indicam que a presença de dados faltantes não compromete 

significativamente o cálculo das vazões de referência, que possuem um componente estatístico em 

sua determinação. Foi possível obter estimativas de vazões comparáveis às obtidas a partir de séries 

completas, mesmo quando a série histórica apresentava falhas em 20 dos 30 anos analisados, ou seja, 

com apenas 33% dos dados disponíveis. 

 

4. CONCLUSÕES 

O algoritmo Multiple Imputation by Chained Equations (MICE) apresentou melhor 

desempenho e maior estabilidade para realizar o preenchimento de falhas nas séries históricas de 

vazões diárias das estações fluviométricas consideradas. 

Para as estações consideradas no estudo, os valores de vazões de referência calculados para as 

séries históricas com dados completos em comparação com as vazões obtidas para as séries com 

dados descartados e preenchidos não diferem estatisticamente, indicando que a presença de dados 

faltantes não compromete significativamente o cálculo das vazões de referência. No entanto é preciso, 

em trabalhos futuros, expandir a análise para outras regiões com climas e comportamento hidrológico 

distintos, variando também o percentual de falhas adotados. 
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