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Abstract: Effective and sustainable water resource management is fundamental for human 

and environmental development. In this context, Explainable Artificial Intelligence (XAI) presents 
itself as a thriving approach to making AI models more transparent and understandable, particularly 
in critical systems such as water resource management. This study proposes a systematic literature 
review to analyze the state-of-the-art application of XAI in water resource management, identifying 
benefits, challenges, and knowledge gaps. The objectives include understanding the application of 
XAI in water management, synthesizing current knowledge, and discussing benefits and limitations. 
Thus, based on the PRISMA methodology for systematic reviews, thematic filters were developed, 
followed by careful reading and categorization by techniques, algorithms, and application areas, 
complemented by a bibliometric analysis of author keywords using the VOSviewer tool. A total of 
314 studies published between 2021 and April 2025 were analyzed, with a predominance of the 
SHAP technique (in 247 studies) and the XGBoost and Random Forest algorithms. The most 
frequent themes were water quality, aquifer management, and extreme events. The main reported 
benefits include increased transparency, reduced subjectivity, greater institutional acceptance, and 
operational optimization. Among the challenges, the most prominent are methodological 
concentration, the lack of standardized evaluation metrics, and the need for greater interdisciplinary 
integration. This study reinforces the potential of XAI as a technical and ethical support for 
data-driven water governance, contributing to more informed, participatory, and resilient 
decision-making. 

 
Resumo: A gestão eficaz e sustentável dos recursos hídricos é fundamental para o 

desenvolvimento humano e ambiental. Nesse contexto, a Inteligência Artificial Explicável (XAI) 
desponta como uma abordagem promissora para tornar os modelos de IA mais transparentes e 
compreensíveis, especialmente em sistemas críticos como a gestão de recursos hídricos. Este estudo 
propõe uma revisão sistemática da literatura para analisar o estado-da-arte do emprego da XAI na 
gestão de recursos hídricos, identificando benefícios, desafios e lacunas de conhecimento. Os 
objetivos incluem entender a aplicação da XAI na gestão hídrica, sintetizar o conhecimento atual e 
discutir benefícios e limitações. Assim, com base no método PRISMA para revisões sistemáticas, 
foram elaborados filtros temáticos, leitura criteriosa e categorização por técnicas, algoritmos e áreas 
de aplicação, complementadas por uma análise bibliométrica das palavras-chave autorais com o 
auxílio da ferramenta VOSviewer. Foram analisados 314 trabalhos publicados entre 2021 e abril de 
2025, com predominância da técnica SHAP (em 247 estudos) e dos algoritmos XGBoost e Random 
Forest. As temáticas mais frequentes foram qualidade da água, gestão de aquíferos e eventos 
extremos. Os principais benefícios incluem aumento da transparência, redução da subjetividade e 
otimização operacional. Entre os desafios, destacam-se a concentração metodológica e a 
necessidade de maior integração interdisciplinar. O estudo reforça o potencial da XAI como suporte 
técnico e ético para a governança hídrica baseada em dados, contribuindo para decisões mais 
fundamentadas, participativas e resilientes. 
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1.​ INTRODUÇÃO 

A gestão sustentável dos recursos hídricos enfrenta desafios intensificados pelas mudanças 
climáticas, urbanização acelerada e crescente demanda por água [DELANKA-PEDIGE et al., 
(2021)], sendo o acesso à água segura reconhecido como direito humano e reforçado pelo ODS nº 6 
[UN-WATER, (2020)]. Nesse cenário, técnicas de Inteligência Artificial (IA) têm se destacado pela 
capacidade de processar grandes volumes de dados hidrológicos, gerar previsões e apoiar decisões 
operacionais em tempo real [DANISH; MOHD, (2022)]; contudo, a natureza opaca de muitos 
modelos compromete sua aplicabilidade em setores sensíveis, como o da gestão pública e ambiental 
[INNERARITY, (2021)]. A Inteligência Artificial Explicável (Explainable Artificial Intelligence – 
XAI) busca superar essa limitação ao fornecer previsões interpretáveis, auditáveis e mais aceitáveis 
a técnicos, gestores e à sociedade [ANGELOV et al., (2021); RIBEIRO et al., (2016)]. Apesar do 
interesse crescente, ainda são escassas as sistematizações sobre sua aplicação na gestão hídrica, 
especialmente quanto às técnicas explicativas mais utilizadas, aos algoritmos predominantes e aos 
principais benefícios e desafios [CHEN et al., (2023)], o que motiva esta revisão sistemática voltada 
a consolidar o conhecimento existente e contribuir para práticas mais transparentes, resilientes e 
baseadas em evidência científica. 

2.​ OBJETIVOS DA PESQUISA 

Este estudo tem como objetivo geral analisar sistematicamente o estado da arte sobre a 
utilização da Inteligência Artificial Explicável (XAI) na gestão dos recursos hídricos, identificando 
os métodos explicativos mais utilizados, os algoritmos predominantes e os principais benefícios e 
limitações reportados na literatura acadêmica recente. Especificamente, busca-se: investigar e 
esclarecer os principais conceitos relacionados à Inteligência Artificial e à Inteligência Artificial 
Explicável (XAI); identificar as técnicas explicativas mais aplicadas em estudos voltados à gestão 
hídrica; mapear os algoritmos de aprendizado de máquina mais utilizados, destacando os critérios 
que orientam sua escolha; sintetizar os benefícios observados com a aplicação da XAI; discutir as 
limitações e desafios metodológicos enfrentados nas aplicações identificadas; examinar as 
tendências temporais das publicações sobre o tema, evidenciando o crescimento do interesse 
acadêmico; e, por fim, apontar lacunas existentes e sugerir direções para futuras pesquisas, com 
vistas a fortalecer a governança hídrica digital, transparente e baseada em dados robustos. 

3.​ METODOLOGIA 

Esta pesquisa adotou o método de Revisão Sistemática da Literatura, conhecido por sua 
capacidade de sintetizar de maneira estruturada, transparente e replicável o conhecimento científico 
existente em um determinado campo [TRANFIELD, (2003)]. 

A pesquisa foi conduzida utilizando a base de dados Scopus, devido à sua abrangência e 
relevância acadêmica. Os dados utilizados nesta análise estão disponíveis publicamente no 
Repositório de Dados de Pesquisa da Unicamp (https://doi.org/10.25824/redu/NMBSHT). Foram 
incluídos artigos científicos, livros e trabalhos apresentados em conferências, publicados 
exclusivamente em inglês, com foco em estudos que relacionassem claramente as aplicações de 
Inteligência Artificial Explicável (XAI) à gestão hídrica. 

A estratégia de busca utilizou operadores booleanos (AND, OR, NOT), combinando termos 
específicos relacionados à XAI, tais como “explainable artificial intelligence”, “XAI”, “SHAP”,  
entre outros, com termos diretamente relacionados à gestão hídrica, como “water quality”, “flood”, 
“groundwater”, “hydrology”, “water resources”, entre outros. 

Após a busca inicial, os artigos foram organizados em planilhas para verificação e exclusão de 
duplicatas. Em seguida, todos os títulos e resumos foram analisados manualmente para garantir 
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aderência ao tema proposto. Por fim, os artigos selecionados passaram por leitura completa, 
assegurando rigor na seleção e inclusão apenas daqueles que claramente contribuíram para os 
objetivos desta revisão. 

O processo de extração e organização dos dados incluiu categorização detalhada por temas, 
tipos de técnicas explicativas, algoritmos utilizados e benefícios identificados. Este procedimento 
permitiu análises qualitativas e quantitativas aprofundadas, oferecendo uma visão abrangente e 
sólida sobre o estado atual das aplicações da XAI na gestão hídrica. 

4.​ FUNDAMENTAÇÃO TEÓRICA 
4.1.​ Inteligência Artificial (IA) e Aprendizado de Máquina (ML) 

A Inteligência Artificial (IA) consiste em um campo interdisciplinar da ciência da 
computação dedicado à criação de sistemas capazes de realizar tarefas que tradicionalmente 
requerem inteligência humana, tais como reconhecimento de padrões, raciocínio lógico, 
aprendizado e tomada de decisão [SILVA et al., (2021)]. Desde seu surgimento formal na década de 
1950, a IA evoluiu significativamente graças ao avanço tecnológico, sobretudo em poder 
computacional e na abundância de dados disponíveis para treinamento de modelos inteligentes 
[DANISH; MOHD, (2022)]. 

Entre as abordagens da IA, destaca-se o Aprendizado de Máquina (Machine Learning - ML), 
uma subárea que permite aos sistemas computacionais identificar padrões, aprender a partir de 
grandes volumes de dados e realizar previsões ou decisões sem serem explicitamente programados 
para tal. Essa capacidade torna o ML especialmente valioso em áreas complexas, como a gestão 
hídrica, onde os fenômenos naturais são altamente não lineares, imprevisíveis e dinâmicos 
[HAMIDREZA et al., (2022); GHOBADI; KANG, (2023)]. 

As técnicas de ML são tradicionalmente classificadas em três categorias principais: 
aprendizado supervisionado, não supervisionado e semi-supervisionado. O aprendizado 
supervisionado utiliza dados rotulados para treinar modelos a realizar previsões ou classificações 
precisas [RYAN HAGGERTY, (2023)]. Já o aprendizado não supervisionado busca identificar 
padrões ocultos ou relações intrínsecas em dados não rotulados [GHOBADI; KANG, (2023)]. Por 
fim, o aprendizado semi-supervisionado explora conjuntos que combinam dados rotulados e não 
rotulados para aperfeiçoar o desempenho preditivo, especialmente em contextos onde a rotulagem 
completa é inviável ou dispendiosa [YOON, (2023)]. 

Recentemente, técnicas mais sofisticadas, como Deep Learning (aprendizado profundo), 
surgiram com força, devido à sua capacidade superior em tratar grandes volumes de dados não 
estruturados, como imagens ou séries temporais complexas. Exemplos proeminentes são as Redes 
Neurais Recorrentes (RNN) e Convolucionais (CNN), que revolucionaram previsões em diversas 
áreas, incluindo a hidrologia, por capturarem dependências espaciais e temporais profundas 
[LECUN, (2015); CHIDEPUDI, (2023)]. 

4.2.​ Inteligência Artificial Explicável (XAI) 

Apesar das vantagens técnicas do ML, especialmente do Deep Learning, muitos modelos são 
considerados "caixas-pretas", isto é, apresentam resultados precisos, porém pouco transparentes 
quanto às razões por trás das decisões tomadas [DOSHI-VELEZ; KIM, (2017)]. Essa falta de 
transparência torna-se problemática em áreas críticas como saúde, segurança e meio ambiente, 
incluindo gestão de recursos hídricos, onde decisões equivocadas podem acarretar consequências 
graves [GUNNING; AHA, (2019)]. 
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Como resposta, emergiu a Inteligência Artificial Explicável (XAI), uma área dedicada a 

tornar compreensíveis as decisões dos algoritmos complexos por meio de técnicas que fornecem 
explicações claras, auditáveis e acessíveis para especialistas e usuários comuns [GILPIN et al., 
(2018); ANGELOV et al., (2021)]. A XAI busca conciliar o alto desempenho preditivo dos 
modelos complexos com a exigência ética e regulatória por transparência, contribuindo para maior 
aceitação institucional e confiança pública [GOODMAN; FLAXMAN, (2017)]. 

Esses objetivos da XAI estão alinhados aos princípios estabelecidos pelo Instituto Nacional de 
Padrões e Tecnologia dos Estados Unidos (NIST), que propõe quatro princípios fundamentais para 
sistemas explicáveis: explicação, relevância, precisão e reconhecimento das limitações do modelo 
[PHILLIPS et al., (2020)]. Nesse contexto, a explicação refere-se à capacidade do modelo fornecer 
justificativas claras sobre suas decisões. A relevância demanda que as explicações sejam 
significativas e compreensíveis para o usuário final. A precisão estabelece que as explicações 
devem refletir fielmente os mecanismos internos do modelo. Por fim, reconhecer os limites 
significa que o sistema deve indicar quando suas previsões são incertas ou excedem suas 
competências [EHSAN et al., (2023); DECK et al., (2023)]. 

Ao seguir esses princípios, a XAI fortalece três pilares centrais da IA ética destacados por 
ARRIETA et al. (2020): a robustez, ao destacar perturbações adversas potenciais que poderiam 
alterar a previsão; a justiça, ao auxiliar na garantia de imparcialidade na tomada de decisões, 
permitindo identificar e corrigir possíveis vieses nos dados de treinamento; e a causalidade, ao 
permitir a rastreabilidade das variáveis que impactam os resultados. 

Para operacionalizar esses conceitos na prática, os métodos Explicativos da XAI são 
categorizados conforme o momento e abrangência das explicações geradas. Os métodos ante-hoc 
são modelos naturalmente interpretáveis, como árvores de decisão ou regressões, projetados para 
serem transparentes desde o início [VILONE; LONGO, (2021)]. Por outro lado, os métodos 
pós-hoc usam abordagens complementares para explicar decisões feitas por modelos originalmente 
opacos, como redes neurais e máquinas de vetor de suporte [ISLAM, (2022)]. 

Já os métodos pós-hoc, destacam-se técnicas agnósticas ao modelo, como SHAP (SHapley 
Additive exPlanations) e LIME (Local Interpretable Model-agnostic Explanations). O SHAP utiliza 
a teoria dos jogos para atribuir importâncias às variáveis e explicar decisões de forma robusta, tanto 
local quanto globalmente [LUNDBERG; LEE, (2017)]. Já o LIME fornece explicações locais 
intuitivas, geralmente aplicadas em decisões individuais para modelos complexos [RIBEIRO; 
SINGH; GUESTRIN, (2016)]. 

5.​ RESULTADOS 

A revisão sistemática identificou e analisou 314 artigos publicados entre 2021 e abril de 2025 
na base de dados Scopus (Figura 1), os quais abordam a aplicação da Inteligência Artificial 
Explicável (XAI) na gestão de recursos hídricos. Os resultados revelam padrões importantes em 
relação às áreas temáticas de concentração, técnicas explicativas mais utilizadas, algoritmos 
aplicados e benefícios relatados. 

5.1.​ Análise Temporal: 

O crescimento expressivo no número de publicações também merece destaque. Houve um 
salto considerável no volume de estudos a partir de 2023, sinalizando o amadurecimento da XAI 
como área emergente e estratégica para a gestão hídrica. Em 2021, apenas 6 artigos atenderam aos 
critérios da revisão; em 2022, esse número subiu para 25; em 2023, chegou a 43; e, em 2024, saltou 
para 175 publicações. Até abril de 2025, já haviam sido identificados 65 artigos, mantendo a 
tendência de expansão contínua. Tal evolução reflete o reconhecimento crescente da importância da 
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explicabilidade algorítmica para aplicações críticas, sobretudo em um contexto global marcado por 
exigências normativas, impactos climáticos intensificados e transformação digital dos sistemas de 
monitoramento e gestão da água [AZEEM et al., (2024)]. 

Figura 1 – Diagrama de fluxo PRISMA  

 

5.2.​ Distribuição temática 

Em termos de distribuição temática, observou-se uma predominância significativa de estudos 
voltados à qualidade da água, que totalizaram 118 artigos e se subdividiram em diferentes subtemas: 
51 artigos abordaram nutrientes e eutrofização; 45 trataram de processos físico-químicos; 22 
enfocaram o tratamento de contaminantes e poluentes, e 19 investigaram a qualidade da água para 
uso humano e saúde. Esse conjunto representa o maior volume da amostra analisada, refletindo a 
prioridade conferida à sustentabilidade ambiental e à segurança hídrica, especialmente em contextos 
urbanos, agrícolas e industriais. Além disso, estudos voltados à gestão de águas subterrâneas 
somaram 40 publicações, dividindo-se entre qualidade e monitoramento (21 artigos) e processos de 
recarga e manejo de aquíferos (19 artigos), destacando a crescente atenção dada aos sistemas 
aquíferos como reservas estratégicas em cenários de escassez. Também foi expressiva a presença de 
26 estudos sobre tratamento de águas residuais e esgoto, voltados à otimização operacional de 
estações de tratamento e ao uso eficiente de recursos em contextos urbanos. A gestão do 
escoamento superficial e da vazão em bacias hidrográficas apareceu em 32 artigos, enquanto a 
análise de eventos hidrológicos extremos e riscos associados, como inundações e secas, foi 
abordada em 24 estudos, evidenciando a preocupação global com os impactos das mudanças 
climáticas. Outros macrotemas relevantes incluíram o ciclo hidrológico, sedimentos e serviços 
ecossistêmicos (22 artigos), gestão urbana da água e infraestrutura (18), e uso agrícola, com foco 
em irrigação e eficiência hídrica (15). Essa concentração temática indica que a aplicação da XAI 
tem se consolidado prioritariamente em domínios diretamente afetados por fatores climáticos, 
pressões antrópicas e demandas crescentes por eficiência, resiliência e transparência na governança 
hídrica. 

5.3.​ Análise das Técnicas XAI utilizadas: 

Quanto aos métodos explicativos utilizados nos estudos revisados, observou-se um 
predomínio claro da técnica SHAP (SHapley Additive Explanations), presente em 247 dos 314 
artigos analisados. Essa hegemonia se justifica por sua compatibilidade com modelos de árvore, 
como XGBoost, Random Forest e LightGBM, bem como por sua capacidade de fornecer 
explicações locais e globais de forma robusta e visualmente acessível [LUNDBERG; LEE, (2017)]. 
O SHAP foi empregado em contextos diversos, incluindo previsão de poluentes [DOMINKOVIĆ et 
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al., (2024)], tratamento de efluentes [HOU et al., (2025)], avaliação da qualidade da água 
subterrânea [GUO et al., (2023)] e modelagem de eventos extremos [HEUER et al., (2024)]. 

Outras técnicas apareceram em frequência significativamente menor. O Partial Dependence 
Plot (PDP), com 27 ocorrências, tem sido usado principalmente em análises globais sobre influência 
de variáveis climáticas [ZHANG et al., (2025)], enquanto o LIME, com 20 estudos, foi mais 
comum em aplicações com redes neurais e dados espaciais [GHOLAMI et al., (2024)]. Métodos 
como ICE (Individual Conditional Expectation), ALE (Accumulated Local Effects) e IG (Integrated 
Gradients) foram empregados de forma complementar em modelos complexos, como LSTM e 
CNN, permitindo análises mais refinadas em contextos específicos [SHADKANI et al., (2024)]. 

Apesar da predominância do SHAP, observam-se iniciativas pontuais de diversificação 
metodológica com técnicas como Deep SHAP, EG (Expected Gradients), Occlusion, Saliency 
Maps, GAMI-net e EBM (Explainable Boosting Machine). Embora menos frequentes, essas 
abordagens vêm sendo adaptadas a cenários mais complexos, como análises visuais por imagens 
satelitais e exigências de interpretabilidade com vistas a fornecer evidência científica para 
ambientes regulatórios [NEOPHYTIDES et al., (2024)].  

5.4.​ Análise dos Algoritmo de Tarefa Primária utilizados: 

No que diz respeito aos algoritmos de aprendizado utilizados como tarefa primária, 
observou-se forte predominância de modelos baseados em árvores de decisão, notadamente o 
XGBoost, empregado em 121 estudos, e o Random Forest, presente em 102. A escolha desses 
algoritmos relaciona-se à sua robustez preditiva, resistência à multicolinearidade e facilidade de 
integração com técnicas explicativas como SHAP e PDP [CHEN; GUESTRIN, (2016)]. Outros 
modelos de boosting, como LightGBM e CatBoost, usados em 35 e 24 estudos respectivamente, 
também figuram com destaque, especialmente em contextos que exigem maior eficiência 
computacional. Além disso, modelos de redes neurais profundas, como LSTM (Long Short-Term 
Memory) e CNN (Convolutional Neural Networks), foram largamente utilizados em tarefas de 
previsão temporal e espacial, sendo identificados em 49 e 31 estudos, respectivamente [HEUER et 
al., (2024); CHEN et al., (2024)]. A combinação desses algoritmos com técnicas de explicação 
visual, como Grad-CAM, LayerCAM e SHAP, evidencia uma tendência à hibridização entre 
modelos preditivos sofisticados e abordagens interpretativas. 

5.5.​ Análise dos Benefícios Associados: 

A análise dos estudos revisados demonstra que os benefícios da XAI na gestão dos recursos 
hídricos vão além do ganho técnico, gerando impactos positivos nas dimensões operacional, 
institucional e social. Entre os aspectos mais citados estão a maior clareza sobre variáveis-chave, a 
ampliação da confiança nos modelos, a transparência das decisões e o suporte a políticas públicas 
mais fundamentadas [HEUER et al., (2024)]. 

Técnicas como SHAP e PDP permitiram identificar os fatores mais relevantes para eventos 
extremos, como secas e inundações, contribuindo para interpretações mais acessíveis e estratégias 
de mitigação mais eficazes [(FENG et al., (2024)]. A possibilidade de justificar previsões com base 
em variáveis compreensíveis tem favorecido a aceitação prática de modelos por técnicos e gestores, 
sobretudo em temas como gestão de aquíferos e previsão de qualidade da água subterrânea [JUNG 
et al., (2024)]. 

Além disso, a explicabilidade tem facilitado a comunicação com stakeholders não técnicos, 
aumentando o engajamento em decisões sobre alocação hídrica, priorização de intervenções e 
monitoramento participativo [MAUSSNER et al., (2025)]. Em contextos operacionais, como 
saneamento e abastecimento, a XAI tem permitido otimizar processos, prever falhas e reduzir o uso 
de insumos, promovendo maior eficiência [CHENG et al., (2025)]. 
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Por fim, ao revelar de forma auditável a lógica interna dos modelos, a XAI tem se mostrado 

essencial para decisões regulatórias e formulação de políticas públicas baseadas em evidências, 
reforçando os princípios de governança adaptativa e justiça ambiental [CHENG et al., (2024)]. 
Assim, os benefícios relatados confirmam que a XAI contribui não apenas para a interpretação 
técnica de modelos, mas para uma gestão hídrica mais transparente, participativa e orientada por 
dados [GULSHAD et al., (2024)]. 

5.6.​ Análise Bibliométrica: Mapa de Coocorrência de Palavras-chave Autorais 

Figura 2 – Mapa de Coocorrência de Palavras-chave Autorais no VOSviewer  

 

Para aprofundar a compreensão das relações temáticas identificadas na revisão sistemática, foi 
realizada uma análise bibliométrica utilizando o software VOSviewer, por meio da técnica de 
coocorrência das palavras-chave autorais dos artigos selecionados. Para a análise de coocorrência, 
foram selecionadas as palavras-chave com, no mínimo, três ocorrências na base de dados, 
resultando em um total de 77 termos analisados a partir de um conjunto inicial de 1.000. O mapa 
gerado (Figura 2) evidencia uma rede fortemente estruturada em torno de métodos explicativos e 
algoritmos específicos, destacando-se um núcleo altamente centralizado em termos como "machine 
learning", "SHAP", "XGBoost" e "explainable artificial intelligence". Essa centralidade ilustra não 
apenas a importância técnica desses elementos, mas também sua ampla aplicabilidade em diversos 
contextos ambientais, tais como a gestão da qualidade da água, a previsão de eventos extremos, a 
gestão de aquíferos e o tratamento de águas residuais, reforçando os achados da revisão sistemática. 

Adicionalmente, observa-se que os clusters gerados pelo VOSviewer refletem uma 
diversidade metodológica significativa, com grupos distintos associados à utilização avançada de 
modelos de redes neurais profundas, ex.: LSTM, CNN, ANN; bem como técnicas recentes de 
boosting, ex.: CatBoost e LightGBM. Destacam-se ainda tópicos como "biochar", associado à 
recuperação ambiental, e "swat", indicando uma tendência à experimentação de técnicas avançadas 
e ainda pouco exploradas. A integração interdisciplinar evidenciada pela presença de termos como  
"prediction", "remote sensing" e "climate change" aponta para a maturidade crescente desta área de 
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pesquisa, sugerindo oportunidades para estudos futuros focados na exploração dessas fronteiras 
metodológicas e temáticas emergentes. 

6.​ LIMITAÇÕES E DESAFIOS 

Embora os avanços na aplicação da Inteligência Artificial Explicável (XAI) na gestão de 
recursos hídricos sejam notáveis, a literatura revisada evidencia um conjunto relevante de 
limitações e desafios que ainda precisam ser enfrentados para que a incorporação desses modelos 
ocorra de forma plena, ética e eficaz nos sistemas decisórios ambientais. 

Uma das limitações mais evidentes está na concentração excessiva em torno de uma única 
técnica explicativa: o SHAP. Apesar de sua robustez, adaptabilidade a diversos algoritmos e 
capacidade de produzir explicações tanto locais quanto globais, o predomínio quase absoluto dessa 
abordagem — identificada em 247 dos 314 estudos — levanta preocupações quanto à diversidade 
metodológica e à possível dependência de um único paradigma interpretativo [HEUER et al., 
(2024)]. Em muitos casos, outras técnicas, como LIME, ICE, PDP e métodos visuais como 
Grad-CAM, poderiam enriquecer a análise, oferecendo perspectivas complementares sobre o 
funcionamento dos modelos. A limitação reside, portanto, não na técnica em si, mas na ausência de 
pluralidade metodológica que favoreça abordagens híbridas e adaptadas ao contexto da aplicação. 

7.​ CONSIDERAÇÕES FINAIS 

A presente revisão sistemática confirma o avanço da Inteligência Artificial Explicável (XAI) 
como ferramenta estratégica na gestão dos recursos hídricos, especialmente diante da intensificação 
de eventos extremos e da demanda por decisões públicas mais eficientes. A análise de 314 estudos 
identificou a predominância do método SHAP, o uso recorrente de algoritmos como XGBoost, 
Random Forest e LSTM, e a aplicação concentrada em temas como qualidade da água, eventos 
extremos e águas subterrâneas [CHEN et al., (2023)]. Verificou-se que a explicabilidade algorítmica 
contribui para aumentar a confiança nos modelos, promover maior auditabilidade e facilitar a 
integração entre ciência, gestão e sociedade [MAUSSNER et al., (2025)]. No entanto, desafios 
persistem, como a concentração metodológica, a escassez de dados em determinadas regiões, a 
ausência de métricas padronizadas e as barreiras interdisciplinares, indicando a necessidade de 
consolidar um ecossistema de XAI mais diverso, interoperável e orientado por valores, capaz de 
sustentar uma governança hídrica mais ética, transparente e resiliente. 
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