# ESTUDO DO COMPORTAMENTO DA LINHA D'ÁGUA, EM CANAIS PRISMÁTICOS, CONSIDERANDO ESCOAMENTO GRADUALMENTE VARIADO, CAUSADO POR UMA SEÇÃO DE CONTROLE.

Rejane Felix Pereira <sup>1</sup>, Raquel Jucá de Moraes Sales<sup>2</sup>, Juliana Alencar Firmo de Araújo<sup>3</sup>, Karla de Carvalho Vasconcellos <sup>4</sup>

**RESUMO** – Este trabalho trata de uma análise do comportamento da linha d'água em um canal prismático, com extremidade livre, onde a água deverá sofre uma queda livre, tomando esta seção como uma seção de controle. Para este estudo foram consideradas algumas simulações, onde as profundidades do canal são calculadas em função de diferentes parâmetros. Os parâmetros considerados foram, a vazão, a declividade longitudinal, o coeficiente de rugosidade e o talude das paredes do canal. A equação diferencial que descreve o perfil das profundidades foi resolvida pelo método do passo a passo. Os resultados mostram que estes parâmetros desempenham importantes papeis no comportamento da linha d'água, mas não na mesma intensidade de influência.

**ABSTRACT** - This paper deals with an analysis of the behavior of the waterline in a prismatic channel, with free bound, where the water will suffer a free fall, turning this section as a control. For this study, it was included some simulations, where the depth of the channel are calculated on the basis of different parameters. The parameters were considered, the flow, the longitudinal slope, the roughness coefficient and slope of the canal walls. The differential equation that describes the profile of the depths was solved by the step method. The results show that these parameters play important roles in the behavior of the water line, but not in the same level of influence

**Palavras-Chave** – escoamento gradualmente variado, seção de controle em canais, perfil de linha d'água em canais.

<sup>1)</sup> Mestre e doutoranda em Recursos Hídricos pela Universidade Federal do Ceará e bolsista do CNPq. Campos do Pici, CEP-60445-760. Bloco 713. Fortaleza – Ceará. e-mail: rejanefp@gmail.com

<sup>2)</sup> Mestre e doutoranda em Recursos Hídricos pela Universidade Federal do Ceará e bolsista do CNPq. Campos do Pici, CEP-60445-760. Bloco 713. Fortaleza – Ceará. e-mail: <a href="mailto:raqueljuca@gmail.com">raqueljuca@gmail.com</a>;

<sup>3)</sup> Mestre e doutoranda em Recursos Hídricos pela Universidade Federal do Ceará e bolsista do CAPES. Campos do Pici, CEP-60445-760. Bloco 713. Fortaleza – Ceará. e-mail: judiaraujo@yahoo.com.br;

<sup>4)</sup> Mestranda em Recursos Hídricos Universidade Federal do Ceará e bolsista do CNPq. Campos do Pici, CEP- 60445-760. Bloco 713. Fortaleza – Ceará. E-mail: <a href="mailto:karla\_vasconcellos@hotmil.com">karla\_vasconcellos@hotmil.com</a>

#### 1.INTRODUÇÃO

O escoamento gradualmente variado é definido como sendo aquele escoamento onde parâmetros hidráulicos variam de forma progressiva ao longo da corrente, mas permanecendo constante com relação ao tempo em cada seção do canal. Normalmente este tipo de escoamento em canais ocorre antes de uma seção de controle, que é o ponto que se pode fazer uma relação entre a profundidade e a vazão.

Como coloca Henderson (1966), uma discussão sobre escoamento uniforme mostra claramente que este estado de escoamento pode ser pensado como um controle, desde que, a partir das equações da resistência pode-se ter o cálculo da descarga sendo conhecida a profundidade.

Entretanto este procedimento não está associado com um ponto do canal. Este é o estado em que um escoamento tende a se comportar em um longo canal, quando outras formas de controle estão presentes. Se, por outro lado, há outros tipos de controles, estas estruturas hidráulicas tendem a alterar o estado de escoamento uniforme fazendo com que o mesmo sofra transição, que pode ser gradual ou abruto, entre dois estado do escoamento.

Na região de transição, o escoamento é geralmente não uniforme e para suas análises há a necessidade do uso de formulação da equação de Chezy de forma diferente daquela usada para o escoamento uniforme. Neste caso, há a necessidade de se trocar a declividade do fundo do canal, usada no escoamento uniforme, para a declividade da linha de energia, e proceder as devidas alterações nas formulações.

Uma das análises mais frequentes neste tipo escoamento trata do estudo do comportamento da linha d'água proveniente da presença de uma estrutura de controle qualquer nas proximidades de uma região do canal. Neste caso, novas formulações são necessárias para que se tenha uma melhor capacidade de análise.

Este trabalho pretende resolver a equação diferencial da linha d'água de um canal retangular, que se aproxima de uma queda livre, e verificar a influência dos parâmetros hidráulicos e geométricos afetam esta linha d'água. O estudo faz uma análise, verificando o comportamento da profundidade, com a variação da vazão, da declividade do fundo, da variação dos taludes e da variação do número de Manning para ver de que forma, essas variações alteram o comportamento das profundidades em diferentes seções do canal, na medida em que a água se aproxima da borda livre.

Os resultados mostraram que a variação do ângulo das paredes do canal é o que exerce menor influência no comportamento da linha d'água, mostrando assim que este elemento geométrico não exerce muito influencia no comportamento do escoamento não uniforme.

#### 2. FORMULAÇÃO DO MODELO MATEMÁTICO

O modelo matemático para estudar esta classe de problema deve partir da dedução da equação da resistência de Chezy para escoamento não uniforme. Assim, aplicando a lei de conservação da quantidade do movimento a volume de controle genérico tem-se:

$$-\gamma A \Delta h - \tau_0 P \Delta x = \rho A v \frac{\partial v}{\partial x} \Delta x \tag{1}$$

Onde,

 $\tau_0$  = Tensão de cisalhamento de fundo;

h = profundidade da linha d'água;

A = área da seção transversal;

V = velocidade na direção x;

x = distancia ao longo do canal;

P = Perímetro molhado;

 $\gamma$  = peso específico da água.

Combinando esta a equação (1) com a equação de Chezy pode-se chegar a equação abaixo,

$$\frac{dH}{dx} = \frac{d}{dx} \left( z + y + \frac{v^2}{2g} \right) = S_f = -\frac{v^2}{RC^2}$$
 (2)

Onde,

R= Raio Hidráulico;

C = Coeficiente de Chezy;

y = Profundidade;

 $z = \cot a \operatorname{de fundo};$ 

g = aceleração da gravidade.

Rearrumando a equação (2) se tem,

$$\frac{dE}{dx} = S_0 - S_f \tag{3}$$

Onde,

E = Energia Específica;

 $S_0$  = Declividade de fundo do canal;

 $S_f$  = Declividade da linha de energia.

Esta equação ainda pode se escrita na forma,

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - F^2_r} \tag{4}$$

Onde,

Fr = número de Froude.

A equação (4) é uma equação diferencial não linear que permite que se calcule o perfil da linha d'água para um canal sujeito a qualquer estrutura de controle. Sua solução pode ser obtida com uso de vários métodos disponíveis na literatura.

### 3. SOLUÇÃO DA EQUAÇÃO DIFERENCIAL DA LINHA D'ÁGUA

Para este trabalho foi proposto à solução da equação (4) pelo método do passo a passo. Este método consiste em transformar a equação diferencial proposta em uma equação de diferença na forma,

$$\frac{\Delta E}{\Delta x} = S_0 - \frac{v^2}{RC^2} \tag{5}$$

Desta maneira, esta equação pode ser resolvida passo a passo, desde que sejam conhecidos os parâmetros hidráulicos e geométricos do canal. Para este trabalho foram usados os seguintes elementos;

- Canal com seção trapezoidal, com boda livre no em uma extremidade do canal.
   Isto quer dizer que haverá uma queda livre da água no final do trecho do canal;
- Largura da base do canal igual a 20 ft;
- Número de Manning variável para diferentes simulações;
- Declividade de Fundo Variável para diferentes simulações;
- Vazão variável diferentes para diferentes simulações;
- Talude variável para diferentes simulações;

#### 4. RESULTADOS

Para este trabalho foram feitas várias simulações para diferentes vazões, diferentes rugosidade, diferentes declividade de fundo e para diferentes taludes, analisando a sensibilidade da equação (4) diante destes parâmetros.

A tabela 1 expõe os cálculos da linha d'água para uma vazão igual a 200 ft $^3$ /s; S<sub>0</sub>=0,001; n=0,025, e talude de 3:2 (H:V). O roteiro de cálculo para este tabela é seguida conforme a equação (5). Os resultados mostram que a, para este ensaio, a profundidade normal ocorre a 400 ft da borda.

Tabela 1 – Calculo da linha d'água para vazão igual a 200 ft<sup>3</sup>/s;  $S_0$ =0,001; n=0,025.

| 2    |                                      |                                                                                                              | Tabela para a determinação do perfil de profundidades nas proximidades da queda                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| -    | 3                                    | 4                                                                                                            | 5                                                                                                                                                                                                                                         | 6                                                                                                                                                                                            | 7                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Α    | P                                    | R <sub>H</sub>                                                                                               | C²                                                                                                                                                                                                                                        | V                                                                                                                                                                                            | V²/2g                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                      | V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(V^2/C^2R_H)_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (S <sub>o</sub> - V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                  | ΔE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x = \sum \Delta x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 31.1 | 25.06                                | 1.24                                                                                                         | 3817                                                                                                                                                                                                                                      | 6.43                                                                                                                                                                                         | 0.642                                                                                                                                                                                                           | 2.049                                                                                                                                                                                                                                                                  | 0.00873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00660                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 34.3 | 25.53                                | 1.34                                                                                                         | 3919                                                                                                                                                                                                                                      | 5.83                                                                                                                                                                                         | 0.529                                                                                                                                                                                                           | 2.066                                                                                                                                                                                                                                                                  | 0.00647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00469                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 37.5 | 26.00                                | 1.44                                                                                                         | 4014                                                                                                                                                                                                                                      | 5.33                                                                                                                                                                                         | 0.441                                                                                                                                                                                                           | 2.109                                                                                                                                                                                                                                                                  | 0.00491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00335                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 40.8 | 26.47                                | 1.54                                                                                                         | 4103                                                                                                                                                                                                                                      | 4.90                                                                                                                                                                                         | 0.373                                                                                                                                                                                                           | 2.171                                                                                                                                                                                                                                                                  | 0.00380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00240                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 44.1 | 26.94                                | 1.64                                                                                                         | 4187                                                                                                                                                                                                                                      | 4.53                                                                                                                                                                                         | 0.319                                                                                                                                                                                                           | 2.247                                                                                                                                                                                                                                                                  | 0.00299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00169                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 47.5 | 27.41                                | 1.73                                                                                                         | 4267                                                                                                                                                                                                                                      | 4.21                                                                                                                                                                                         | 0.275                                                                                                                                                                                                           | 2.333                                                                                                                                                                                                                                                                  | 0.00239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00117                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 51.0 | 27.88                                | 1.83                                                                                                         | 4343                                                                                                                                                                                                                                      | 3.93                                                                                                                                                                                         | 0.239                                                                                                                                                                                                           | 2.428                                                                                                                                                                                                                                                                  | 0.00194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      |                                      |                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00077                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 54.4 | 28.35                                | 1.92                                                                                                         | 4415                                                                                                                                                                                                                                      | 3.67                                                                                                                                                                                         | 0.210                                                                                                                                                                                                           | 2.528                                                                                                                                                                                                                                                                  | 0.00159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00040                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| E9 0 | 20.02                                | 2.01                                                                                                         | 4494                                                                                                                                                                                                                                      | 2 15                                                                                                                                                                                         | 0.195                                                                                                                                                                                                           | 2 634                                                                                                                                                                                                                                                                  | 0.00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.00046                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      | 31.1<br>34.3<br>37.5<br>40.8<br>44.1 | 31.1 25.06<br>34.3 25.53<br>37.5 26.00<br>40.8 26.47<br>44.1 26.94<br>47.5 27.41<br>51.0 27.88<br>54.4 28.35 | 31.1     25.06     1.24       34.3     25.53     1.34       37.5     26.00     1.44       40.8     26.47     1.54       44.1     26.94     1.64       47.5     27.41     1.73       51.0     27.88     1.83       54.4     28.35     1.92 | 31.1 25.06 1.24 3817<br>34.3 25.53 1.34 3919<br>37.5 26.00 1.44 4014<br>40.8 26.47 1.54 4103<br>44.1 26.94 1.64 4187<br>47.5 27.41 1.73 4267<br>51.0 27.88 1.83 4343<br>54.4 28.35 1.92 4415 | 31.1 25.06 1.24 3817 6.43 34.3 25.53 1.34 3919 5.83 37.5 26.00 1.44 4014 5.33 40.8 26.47 1.54 4103 4.90 44.1 26.94 1.64 4187 4.53 47.5 27.41 1.73 4267 4.21 51.0 27.88 1.83 4343 3.93 54.4 28.35 1.92 4415 3.67 | 31.1 25.06 1.24 3817 6.43 0.642  34.3 25.53 1.34 3919 5.83 0.529  37.5 26.00 1.44 4014 5.33 0.441  40.8 26.47 1.54 4103 4.90 0.373  44.1 26.94 1.64 4187 4.53 0.319  47.5 27.41 1.73 4267 4.21 0.275  51.0 27.88 1.83 4343 3.93 0.239  54.4 28.35 1.92 4415 3.67 0.210 | 31.1         25.06         1.24         3817         6.43         0.642         2.049           34.3         25.53         1.34         3919         5.83         0.529         2.066           37.5         26.00         1.44         4014         5.33         0.441         2.109           40.8         26.47         1.54         4103         4.90         0.373         2.171           44.1         26.94         1.64         4187         4.53         0.319         2.247           47.5         27.41         1.73         4267         4.21         0.275         2.333           51.0         27.88         1.83         4343         3.93         0.239         2.428           54.4         28.35         1.92         4415         3.67         0.210         2.528 | 31.1         25.06         1.24         3817         6.43         0.642         2.049         0.00873           34.3         25.53         1.34         3919         5.83         0.529         2.066         0.00647           37.5         26.00         1.44         4014         5.33         0.441         2.109         0.00491           40.8         26.47         1.54         4103         4.90         0.373         2.171         0.00380           44.1         26.94         1.64         4187         4.53         0.319         2.247         0.00299           47.5         27.41         1.73         4267         4.21         0.275         2.333         0.00239           51.0         27.88         1.83         4343         3.93         0.239         2.428         0.00194           54.4         28.35         1.92         4415         3.67         0.210         2.528         0.00159 | 31.1 25.06 1.24 3817 6.43 0.642 2.049 0.00873 0.00760 34.3 25.53 1.34 3919 5.83 0.529 2.066 0.00647 0.00569 37.5 26.00 1.44 4014 5.33 0.441 2.109 0.00491 0.00435 40.8 26.47 1.54 4103 4.90 0.373 2.171 0.00380 0.00340 44.1 26.94 1.64 4187 4.53 0.319 2.247 0.00299 0.00269 47.5 27.41 1.73 4267 4.21 0.275 2.333 0.00239 0.00217 51.0 27.88 1.83 4343 3.93 0.239 2.428 0.00194 0.00177 54.4 28.35 1.92 4415 3.67 0.210 2.528 0.00159 0.00146 | 31.1 25.06 1.24 3817 6.43 0.642 2.049 0.00873 0.00760 -0.00660 34.3 25.53 1.34 3919 5.83 0.529 2.066 0.00647 0.00569 -0.00469 37.5 26.00 1.44 4014 5.33 0.441 2.109 0.00491 0.00435 -0.00335 40.8 26.47 1.54 4103 4.90 0.373 2.171 0.00380 0.00340 -0.00240 44.1 26.94 1.64 4187 4.53 0.319 2.247 0.0029 0.00269 -0.00169 47.5 27.41 1.73 4267 4.21 0.275 2.333 0.00239 0.00217 -0.00117 51.0 27.88 1.83 4343 3.93 0.239 2.428 0.00194 0.0017 -0.00077 54.4 28.35 1.92 4415 3.67 0.210 2.528 0.00159 0.00146 -0.00046 | 31.1 25.06 1.24 3817 6.43 0.642 2.049 0.00873 0.00760 -0.00660 0.017  34.3 25.53 1.34 3919 5.83 0.529 2.066 0.00647 0.00569 -0.00469 0.043  37.5 26.00 1.44 4014 5.33 0.441 2.109 0.00491 0.00435 -0.00335 0.062  40.8 26.47 1.54 4103 4.90 0.373 2.171 0.00380 0.00340 -0.00240 0.076  44.1 26.94 1.64 4187 4.53 0.319 2.247 0.00299 0.00269 -0.00169 0.086  47.5 27.41 1.73 4267 4.21 0.275 2.333 0.00239 0.00217 -0.00117 0.094  51.0 27.88 1.83 4343 3.93 0.239 2.428 0.00194 0.00177 -0.00077 0.101  54.4 28.35 1.92 4415 3.67 0.210 2.528 0.00159 0.00146 -0.00046 0.105 | 31.1 25.06 1.24 3817 6.43 0.642 2.049 0.00873 0.00760 -0.00660 0.017 -3 34.3 25.53 1.34 3919 5.83 0.529 2.066 0.00647 0.00569 -0.00469 0.043 -9 37.5 26.00 1.44 4014 5.33 0.441 2.109 0.00491 0.00456 -0.00355 0.062 -19 40.8 26.47 1.54 4103 4.90 0.373 2.171 0.00380 0.00340 -0.00240 0.076 -32 44.1 26.94 1.64 4187 4.53 0.319 2.247 0.00299 0.00269 -0.00169 0.086 -51 47.5 27.41 1.73 4267 4.21 0.275 2.333 0.00239 0.00217 -0.00117 0.094 -81 51.0 27.88 1.83 4343 3.93 0.239 2.428 0.00194 0.00177 -0.00077 0.101 -131 54.4 28.35 1.92 4415 3.67 0.210 2.528 0.00159 0.00146 -0.00046 0.105 -231 |  |  |  |

A tabela 2 apresenta os cálculos da linha d'água para uma vazão igual a 400 ft<sup>3</sup>/s, com os outros parâmetros mantidos segundo a simulação anterior. Os resultados mostram que, para este caso, a influência dos efeitos do controle é sentido a uma distancia de 800 ft da seção de controle. Pelo resultado entende-se que o comportamento da linha d'água é muito sensível à vazão do rio.

Tabela 2. - Calculo da linha d'água para vazão igual a 400 ft<sup>3</sup>/s; S<sub>0</sub>=0,001; n=0,025.

|      | Tabela para a determinação do perfil de profundidades nas proximidades da queda |       |                |      |      |       |       |                                               |                                                               |                        |       |      |                     |  |
|------|---------------------------------------------------------------------------------|-------|----------------|------|------|-------|-------|-----------------------------------------------|---------------------------------------------------------------|------------------------|-------|------|---------------------|--|
| 1    | 2                                                                               | 3     | 4              | 5    | 6    | 7     | 8     | 9                                             | 10                                                            | 11                     | 12    | 13   | 14                  |  |
| y    | Α                                                                               | P     | R <sub>H</sub> | C²   | V    | V²/2g | E     | V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> | (V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | $(S_o - V^2/C^2R_H)_m$ | ΔE    | Δx   | $x = \sum \Delta x$ |  |
| 2.19 | 50.9                                                                            | 27.87 | 1.83           | 4342 | 7.86 | 0.959 | 3.146 | 0.00778                                       |                                                               |                        |       |      | 0                   |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00684                                                       | -0.00584               | 0.022 | -4   |                     |  |
| 2.37 | 55.8                                                                            | 28.54 | 1.96           | 4443 | 7.16 | 0.797 | 3.168 | 0.00590                                       |                                                               |                        |       |      | -4                  |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00523                                                       | -0.00423               | 0.057 | -14  |                     |  |
| 2.55 | 60.9                                                                            | 29.20 | 2.09           | 4538 | 6.57 | 0.671 | 3.225 | 0.00456                                       |                                                               |                        |       |      | -17                 |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00408                                                       | -0.00308               | 0.083 | -27  |                     |  |
| 2.74 | 66.0                                                                            | 29.86 | 2.21           | 4627 | 6.06 | 0.570 | 3.309 | 0.00359                                       |                                                               |                        |       |      | -44                 |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00323                                                       | -0.00223               | 0.103 | -46  |                     |  |
| 2.92 | 71.2                                                                            | 30.52 | 2.33           | 4712 | 5.61 | 0.490 | 3.411 | 0.00287                                       |                                                               |                        |       |      | -91                 |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00259                                                       | -0.00159               | 0.118 | -74  |                     |  |
| 3.11 | 76.6                                                                            | 31.18 | 2.46           | 4792 | 5.22 | 0.424 | 3.529 | 0.00232                                       |                                                               |                        |       |      | -165                |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00211                                                       | -0.00111               | 0.129 | -117 |                     |  |
| 3.29 | 82.0                                                                            | 31.84 | 2.58           | 4869 | 4.88 | 0.370 | 3.659 | 0.00190                                       |                                                               |                        |       |      | -281                |  |
|      |                                                                                 |       |                |      |      |       |       |                                               | 0.00173                                                       | -0.00073               | 0.138 | -189 |                     |  |
| 3.47 | 87.5                                                                            | 32.50 | 2.69           | 4942 | 4.57 | 0.324 | 3.797 | 0.00157                                       | 0.00444                                                       | 0.00044                | 0.440 | 220  | -470                |  |
| 3.66 | 93.2                                                                            | 33.16 | 2.81           | 5012 | 4.29 | 0.286 | 3.942 | 0.00131                                       | 0.00144                                                       | -0.00044               | 0.146 | -332 | -802                |  |

Na tabela 3 estão esboçados os cálculos da linha d'água para uma vazão de 600 ft<sup>3</sup>/s, mantidos os demais parâmetros anteriores. Os resultados mostram que, para este caso, a influência do controle é sentido pela linha escoamento em um ponto situado a 950 ft da seção de controle. A partir deste resultado, entende-se que entre uma vazão de 200 e uma de 600 ft<sup>3</sup>/s, houve uma considerável mudança no comportamento da linha d'água, verifica-se ainda que esta variação é linear em relação à variação da vazão.

Tabela 3. - Calculo da linha d'água para vazão igual a 600 ft<sup>3</sup>/s; S<sub>0</sub>=0,001; n=0,025.

|        | Tabela para a determinação do perfil de profundidades nas proximidades da queda |        |                     |         |        |            |        |                                                    |                                                                     |                                                                                      |          |          |               |
|--------|---------------------------------------------------------------------------------|--------|---------------------|---------|--------|------------|--------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------|----------|---------------|
| 1<br>v | 2<br>A                                                                          | 3<br>P | 4<br>R <sub>H</sub> | 5<br>C² | 6<br>V | 7<br>V²/2g | 8<br>E | 9<br>V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> | 10<br>(V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | 11<br>(S <sub>o</sub> - V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | 12<br>ΔΕ | 13<br>∆x | 14<br>x = ΣΔx |
|        |                                                                                 |        |                     | 1005    | •      |            |        |                                                    | ( - · - · - · · · · · · · · · · · · · ·                             | (-0                                                                                  |          |          |               |
| 2.82   | 68.3                                                                            | 30.15  | 2.26                | 4665    | 8.79   | 1.200      | 4.018  | 0.00731                                            |                                                                     |                                                                                      |          |          | 0             |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00646                                                             | -0.00546                                                                             | 0.026    | -5       |               |
| 3.04   | 74.7                                                                            | 30.95  | 2.41                | 4765    | 8.03   | 1.003      | 4.043  | 0.00561                                            |                                                                     |                                                                                      |          |          | -5            |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00500                                                             | -0.00400                                                                             | 0.067    | -17      |               |
| 3.26   | 81.2                                                                            | 31.75  | 2.56                | 4859    | 7.39   | 0.847      | 4.111  | 0.00439                                            |                                                                     |                                                                                      |          |          | -22           |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00393                                                             | -0.00293                                                                             | 0.098    | -34      |               |
| 3.49   | 88.0                                                                            | 32.55  | 2.70                | 4948    | 6.82   | 0.723      | 4.209  | 0.00348                                            |                                                                     |                                                                                      |          |          | -55           |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00314                                                             | -0.00214                                                                             | 0.122    | -57      |               |
| 3.71   | 94.8                                                                            | 33.35  | 2.84                | 5032    | 6.33   | 0.622      | 4.331  | 0.00280                                            |                                                                     |                                                                                      |          |          | -112          |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00254                                                             | -0.00154                                                                             | 0.140    | -91      |               |
| 3.93   | 101.8                                                                           | 34.15  | 2.98                | 5112    | 5.89   | 0.540      | 4,471  | 0.00228                                            |                                                                     |                                                                                      |          |          | -203          |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00208                                                             | -0.00108                                                                             | 0.154    | -143     |               |
| 4.15   | 109.0                                                                           | 34.95  | 3.12                | 5189    | 5.51   | 0.471      | 4.625  | 0.00187                                            |                                                                     |                                                                                      |          |          | -346          |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00172                                                             | -0.00072                                                                             | 0.165    | -231     |               |
| 4.38   | 116.3                                                                           | 35.76  | 3.25                | 5263    | 5.16   | 0.414      | 4.790  | 0.00156                                            |                                                                     |                                                                                      |          |          | -577          |
|        |                                                                                 |        |                     |         |        |            |        |                                                    | 0.00143                                                             | -0.00043                                                                             | 0.174    | -406     |               |
| 4.60   | 123.7                                                                           | 36.56  | 3.38                | 5333    | 4.85   | 0.365      | 4.965  | 0.00130                                            |                                                                     |                                                                                      |          |          | -983          |

A figura 1 ilustra os gráficos da linha d'água para as três simulações anteriores. Através desta figura pode-se ver que a sensibilidade da linha d'água é considerável com relação à variação da vazão. O resultado, como esperado, mostra que a variação da vazão altera a profundidade crítica de acordo com as formulações clássicas para o cálculo desta grandeza.



Figura1. – Comportamento da linha d'água para diferentes vazões.

A tabela 4 espõe o cálculo da linha d'água para vazão igual a 200 ft $^3$ /s;  $S_0$ =0,001; n=0,02. Para esta simulação, os resultados implicam que a sensibilidade da linha d'água à variação da rugosidade não é tão expressiva quando à variação da vazão, no que diz respeito a profundidade do canal. Entretanto, quando se observa a influência do escoamento com respeito ao controle, este parâmetro torna-se mais interessante. Como pode ser observada, a variação da rugosidade de 0,025 para 0,02, faz com que o escoamento normal deixe de ocorrer a 200 ft de diferença, o que é uma distancia significativa, para os padrões em que se está analisando.

Tabela 4. Calculo da linha d'água para vazão igual a 200 ft<sup>3</sup>/s; S<sub>0</sub>=0,001; n=0,02.

|      |      |       | Ta             | bela para a | determinaçã | io do perfil de p | rofundidade | es nas prox                                   | imidades da                                                   | queda                                                                          |       |      |                       |
|------|------|-------|----------------|-------------|-------------|-------------------|-------------|-----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------|------|-----------------------|
| 1    | 2    | 3     | 4              | 5           | 6           | 7                 | 8           | 9                                             | 10                                                            | 11                                                                             | 12    | 13   | 14                    |
| у    | Α    | Р     | R <sub>H</sub> | C²          | V           | V²/2g             | E           | V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> | (V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | (S <sub>o</sub> - V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | ΔΕ    | Δx   | $x = \Sigma \Delta x$ |
| 1,41 | 31,1 | 25,06 | 1,24           | 5965        | 6,43        | 0,642             | 2,049       | 0,00558                                       |                                                               |                                                                                |       |      | 0                     |
|      |      |       |                |             |             |                   |             |                                               | 0,00504                                                       | -0,00404                                                                       | 0,009 | -2   |                       |
| 1,50 | 33,4 | 25,40 | 1,31           | 6079        | 5,99        | 0,558             | 2,058       | 0,00450                                       |                                                               |                                                                                |       |      | -2                    |
|      |      |       |                |             |             |                   |             |                                               | 0,00409                                                       | -0,00309                                                                       | 0,023 | -8   |                       |
| 1,59 | 35,7 | 25,73 | 1,39           | 6187        | 5,61        | 0,489             | 2,081       | 0,00367                                       |                                                               |                                                                                |       |      | -10                   |
|      |      |       |                |             |             |                   |             |                                               | 0,00335                                                       | -0,00235                                                                       | 0,035 | -15  |                       |
| 1,69 | 38,0 | 26,07 | 1,46           | 6291        | 5,27        | 0,431             | 2,116       | 0,00303                                       |                                                               |                                                                                |       |      | -25                   |
|      |      |       |                |             |             |                   |             |                                               | 0,00278                                                       | -0,00178                                                                       | 0,044 | -25  |                       |
| 1,78 | 40,3 | 26,40 | 1,53           | 6391        | 4,96        | 0,383             | 2,160       | 0,00253                                       |                                                               |                                                                                |       |      | -50                   |
|      |      |       |                |             |             |                   |             |                                               | 0,00232                                                       | -0,00132                                                                       | 0,052 | -39  |                       |
| 1,87 | 42,7 | 26,73 | 1,60           | 6486        | 4,69        | 0,341             | 2,212       | 0,00212                                       |                                                               |                                                                                |       |      | -88                   |
|      |      |       |                |             |             |                   |             |                                               | 0,00196                                                       | -0,00096                                                                       | 0,057 | -60  |                       |
| 1,96 | 45,0 | 27,07 | 1,66           | 6577        | 4,44        | 0,306             | 2,269       | 0,00180                                       |                                                               |                                                                                |       |      | -148                  |
| 0.00 | 47.5 | 07.40 | 4.70           | 0005        |             | 0.070             | 0.000       | 0.00454                                       | 0,00167                                                       | -0,00067                                                                       | 0,062 | -93  | 011                   |
| 2,06 | 47,5 | 27,40 | 1,73           | 6665        | 4,21        | 0,276             | 2,332       | 0,00154                                       | 0.00442                                                       | 0.00042                                                                        | 0.066 | 151  | -241                  |
| 2.15 | 49.9 | 27,74 | 1.80           | 6750        | 4,01        | 0.250             | 2.398       | 0.00132                                       | 0,00143                                                       | -0,00043                                                                       | 0,066 | -154 | -396                  |

Na tabela 5 apresentam-se os cálculos da linha d'água para um coeficiente de rugosidade igual a 0,015. Pelos resultados, verifica-se que a influência da seção de controle na transformação do comportamento do escoamento de uniforme para gradualmente variado ocorre a uma distancia de 560 ft, mostrando assim que este parâmetro é determinante na transformação do comportamento do regime de escoamento, nas vizinhanças de seções de controle.

Tabela 5. Calculo da linha d'água para vazão igual a 200 ft<sup>3</sup>/s;  $S_0$ =0,001; n=0,015.

|      | Tabela para a determinação do perfil de profundidades nas proximidades da queda |       |                |                |      |       |       |                                               |                                                               |                                                                                |       |     |                       |  |
|------|---------------------------------------------------------------------------------|-------|----------------|----------------|------|-------|-------|-----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------|-----|-----------------------|--|
| 1    | 2                                                                               | 3     | 4              | 5              | 6    | 7     | 8     | 9                                             | 10                                                            | 11                                                                             | 12    | 13  | 14                    |  |
| у    | Α                                                                               | Р     | R <sub>H</sub> | C <sup>2</sup> | V    | V²/2g | E     | V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> | (V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | (S <sub>o</sub> - V <sup>2</sup> /C <sup>2</sup> R <sub>H</sub> ) <sub>m</sub> | ΔΕ    | Δx  | $x = \Sigma \Delta x$ |  |
| 1,41 | 31,1                                                                            | 25,06 | 1,24           | 10604          | 6,43 | 0,642 | 2,049 | 0,00314                                       |                                                               |                                                                                |       |     | 0                     |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00296                                                       | -0,00196                                                                       | 0,003 | -1  |                       |  |
| 1,46 | 32,3                                                                            | 25,25 | 1,28           | 10716          | 6,18 | 0,594 | 2,052 | 0,00279                                       |                                                               |                                                                                |       |     | -1                    |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00263                                                       | -0,00163                                                                       | 0,008 | -5  |                       |  |
| 1,51 | 33,6                                                                            | 25,43 | 1,32           | 10826          | 5,95 | 0,551 | 2,059 | 0,00248                                       |                                                               |                                                                                |       |     | -6                    |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00235                                                       | -0,00135                                                                       | 0,012 | -9  |                       |  |
| 1,56 | 34,8                                                                            | 25,61 | 1,36           | 10932          | 5,74 | 0,512 | 2,071 | 0,00222                                       |                                                               |                                                                                |       |     | -15                   |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00210                                                       | -0,00110                                                                       | 0,016 | -14 |                       |  |
| 1,61 | 36,1                                                                            | 25,80 | 1,40           | 11036          | 5,54 | 0,477 | 2,087 | 0,00199                                       |                                                               |                                                                                |       |     | -29                   |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00189                                                       | -0,00089                                                                       | 0,019 | -21 |                       |  |
| 1,66 | 37,4                                                                            | 25,98 | 1,44           | 11137          | 5,35 | 0,445 | 2,106 | 0,00179                                       |                                                               |                                                                                |       |     | -51                   |  |
|      |                                                                                 |       |                |                |      |       |       |                                               | 0,00170                                                       | -0,00070                                                                       | 0,022 | -31 |                       |  |
| 1,71 | 38,6                                                                            | 26,16 | 1,48           | 11236          | 5,18 | 0,416 | 2,128 | 0,00161                                       |                                                               |                                                                                |       |     | -82                   |  |
| 4.70 | 00.0                                                                            | 00.05 | 4.50           | 44000          | 5.04 |       | 0.450 | 0.00440                                       | 0,00154                                                       | -0,00054                                                                       | 0,025 | -46 | 400                   |  |
| 1,76 | 39,9                                                                            | 26,35 | 1,52           | 11333          | 5,01 | 0,390 | 2,153 | 0,00146                                       | 0.00420                                                       | 0.00020                                                                        | 0.027 | CO  | -128                  |  |
| 1,81 | 41,2                                                                            | 26,53 | 1,55           | 11427          | 4,85 | 0,366 | 2,180 | 0,00133                                       | 0,00139                                                       | -0,00039                                                                       | 0,027 | -68 | -196                  |  |

## Perfil de Profundidades Variação do Coeficiente de Manning

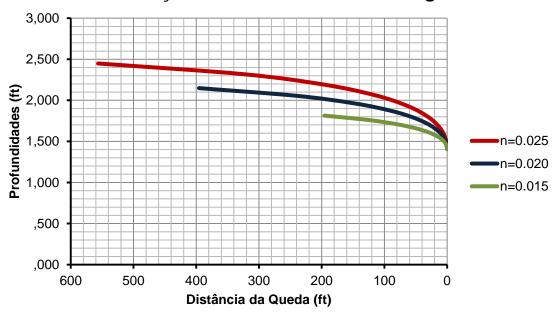



Figura 2. – Comportamento da linha d'água para diferentes coeficientes de rugosidade.

A figura 2 ilustra os diferentes pefis da linha d'água para este conjunto de simulações. Como pode ser observado, a alteração do coeficiente de rugosidade não altera de forma considerável as profundidades, mas exerce um papel importante na transição do escoamento de uniforme para gradualmente variado. Neste caso, o comportamento da linha d'água é tão sensível a este parametros quanto foi para a variação da vazão. Por outro lado, através da figura é possivel verificar que quanto maior for o número de Manning, maior serão as profundidades na zona de escoamento gradualmente variado.

# Perfil de Profundidades Variação da Declividade Longitudinal

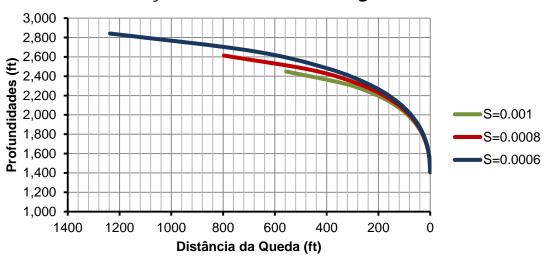



Figura 3. - Comportamento da linha d'água para diferentes declividades longitudinais.

Na figura 3 estão ilustrados os resultados das simulações para diferentes declividades longitudinais. Pela figura pode-se ver que este parâmetro é pouco sensível para as profundidades do canal, no desenvolvimento do movimento gradualmente variado. No entanto, os resultados mostram que a transição ocorre em diferentes distancias da seção de controle. Neste caso, a transição do escoamento é muito sensível a este parâmetro. Por exemplo, para uma declividade de 0,001, a transição ocorre a 480 ft da seção de controle. Já para a declividade de fundo igual a 0,0006, esta transição ocorre a 1220 ft do referido ponto. Esta diferença comprova a importância deste parâmetro nos estudos dos canais nas regiões de controle. Outra observação importante é que quanto maior for a declividade menor é a profundidade do canal. Este resultado é esperado, considerando os métodos clássicos de cálculo da profundidade para canais.

# Perfil de Profundidades Variação do Talude das Paredes

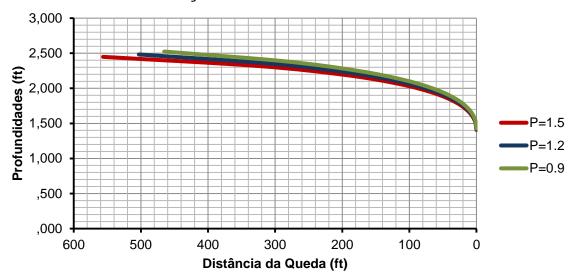



Figura 4. - Comportamento da linha d'água para diferentes taludes de paredes do canal.

A figura 4 ilustra os perfis de profundidade para diferentes taludes de paredes do canal. Foram analisados três valores, sendo o menor igual a 0,9 e o maior igual a 1,5. Através dos resultados, entende-se que o comportamento dos perfis não se alteram como aconteceram nas outras simulações. Neste caso, tanto do ponto de vista de profundidade, como do ponto de vista de distancia da seção de controle, as diferenças são pequenas, o que permite concluir que uma variação neste parametro não atera de forma significativa o comportamento do perfil.

#### 5. CONCLUSÕES

Para um escoamento gradualmente variado estudou-se o comportamento do perfil das profundidades em um canal prismático com extremidade livre de controle. Os resultados permitiram concluir que para os diferentes condições tomadas nas simulações, o coeficiente da rugosidade e a vazão são os parametros que mais influênciam o comportamento da linha d'água, tanto do ponto de vista de profundidade como do ponto de vista de transição entre o escoamento uniforme e o escoamento gradualmante variado.

Pelo resultados, permitiram-se concluir também que a declividade dos taludes não exerce papel importante no comportamento do perfil de linha d'água. Outra conclusão que pode ser tirada é que com relação à declividade longitudinal do fundo do canal. Este

parâmetro desempenha um papel significartivo somente na transição do escoamento uniforme para o escoamento gradualmente variado.

#### **BIBLIOGRAFIA**

BRAGA, B. P. F. Non-structural flood control measures—introductory notes for a special issue of urban waters. **Urban Water**, [S. L.], v. 1, p. 112, 1999.

CHALFEN, Mieczyslaw; NIEMIEC, Andrzej. Analytical and numerical solution of Saint-Venant equations. **Journal of Hydrology**, Poland, v. 86, p. 1-13, Feb. 1986.

CHOW, V. T., **Open-channel hydraulics**. McGraw-Hill, New York, N. Y., 1959, 680 p.

FRENCH, R. H. Open Channel Hydraulics, B&JO Enterprise PTE LTD, 1986.

HENDERSON, F. M. Open Channel Flow, Macmillian Publishing Co. Inc. 1966.

RAJARATNAM, N.; AHMADI, R. Hydraulics of channels with flood-plains. **Journal** of Hydraulic Research, {S. L.], v.19, n.1, p. 43 – 60. 1981.

RASHID, Mizanur R. S. M.; CHAUDHRY, M. Hanif. Flood routing in channels with flood plains. **Journal of Hydrology**, USA, v. 171, p. 75–91. 1995.

SHEN, H. W; YEN, B. C. Advances in open-channel hydraulics after V.T. Chow's book. **Journal of Hydrology**, [S. L.], v. 64, p. 333–348. 1984.

YEN, B. C., Open-channel flow equations revisited. **Water Resources**, [S. L.], n. 51, p. 979–1009. 1973.