

XIII ENCONTRO DE RECURSOS HÍDRICOS EM SERGIPE

VIABILIDADE DA IMPLANTAÇÃO DE UMA CISTERNA NO CMEI JACIRA BONGIOLO VERONA

Angela Lionço ¹; Luciana Espíndula de Quadros ²& Fernanda Cristina Araújo ³

RESUMO: Apesar do Brasil ser privilegiado em relação a quantidade de água, sua distribuição é heterogênea e decorrente dos altos índices de poluição, temos uma queda na qualidade da água. Visando evitar desperdícios, a captação e aproveitamento de água da chuva estão se tornando alternativas cada vez mais viáveis. Considerando este contexto, este trabalho tem por objetivo estudar a viabilidade de uma possível implantação de uma cisterna no Centro Municipal de Educação Infantil - CMEI Jacira Bongiolo Verona, na cidade de São Miguel do Iguaçu - Paraná. A área de captação será o telhado do CMEI e, por ser um local que acumula muitas impurezas e sujeiras, assim poluindo a água captada, será utilizado um sistema de desvio de águas primárias do tipo DESVIUFPE, buscando melhorar a qualidade deste recurso. Para o transporte da água será utilizado o sistema de calhas que já existe no CMEI. O dimensionamento do reservatório, será calculado seguindo o Método Prático Inglês. O projeto prevê a utilização dos seguintes materiais: canos de PVC, ligações do tipo tê's, luvas, torneira, reservatório de plástico e uma torneira para a retirada da água. A água captada será utilizada para fins não potáveis como, limpeza dos espaços internos e externos.

Palavras-Chave – Captação, reservatório, reuso.

INTRODUÇÃO

A água é um dos recursos naturais mais valiosos, pois é uma das fontes de vida para a humanidade. Pela crescente preocupação com o meio ambiente e o uso consciente da água, a utilização de água tratada para fins menos nobres tornou-se inviável (SEEGER, SARI E PAIVA, 2007).

Em virtude disso, uma das maneiras para evitar o desperdício e reduzir o consumo, é armazenar a água pluvial por meio de cisternas e utilizar essa água coletada para fins, potáveis ou não. Os sistemas de aproveitamento de água pluvial, trazem consigo o conceito de sustentabilidade por conta de sua fácil instalação, alto custo-benefício e o retorno financeiro a curto prazo (MARTINI, 2014). Tais sistemas possibilitam a redução do consumo de água potável, a minimização de enchentes/alagamentos e surgem como alternativas de abastecimento em meio a um cenário crítico de indisponibilidade hídrica (MOURA, SILVA E BARROS, 2017).

Segundo a NBR 15527 (ABNT, 2007), a água da chuva deve ser utilizada para fins não potáveis, como descargas em bacias sanitárias, irrigação de gramados e plantas ornamentais, lavagem de veículos, limpeza de calçadas e ruas, limpeza de pátios, espelhos d'água e usos industriais.

¹⁻²⁾ Afiliação: Instituto Federal do Paraná – IFPR, Campus de Foz do Iguaçu. Av. Araucária, 780, Bairro Vila A – CEP: 85860-000 – Foz do Iguaçu – Paraná. Telefone (45) 3422-5300. E-mail: angelalionco@gmail.com ; luciana.quadros@ifpr.edu.br ²

³⁾ Afiliação: Universidade Federal do Paraná; Rua Pioneiro, 2153 Palotina (PR); 3211-8501; fer.crisaraujo@yahoo.com.br³

É importante fazer o planejamento da utilização do sistema de aproveitamento da água de chuva para verificar a quantidade de água que poderá ser coletada e armazenada, pois isso implica diretamente na redução dos custos de implantação e manutenção.

Dessa forma, foi realizado um estudo de caso no Centro Municipal de Educação Infantil (CMEI) para desenvolver o projeto de uma possível implantação de cisterna para utilização futura da água pluvial coletada.

METODOLOGIA

Local de Estudo

O presente estudo foi realizado no CMEI Jacira Bongiolo Verona na cidade de São Miguel do Iguaçu (25° 20' 50"S 54° 14' 6"W), Paraná, Rua Floresta, 976 (Figura 1). O município de São Miguel do Iguaçu localiza-se no extremo oeste do Paraná, com uma área de 851,301 km² e população de 25.769 habitantes (IBGE 2010). O CMEI possui 29 funcionários e 65 alunos.

Figura 1- Localização e fachada da CMEI Jacira Bongiolo

Sistema de Coleta e Armazenamento

O sistema de captação de água da chuva será composto por um telhado, feito por telha de amianto, que será a superfície de captação da água precipitada, um sistema de calhas condutoras já existentes no CMEI, um dispositivo de desvio de águas primárias e por fim um reservatório com uma torneira para retirada da água.

Vazão do Projeto

Para efetuar o cálculo da vazão do projeto foi utilizada a fórmula prevista na NBR 10.844 (ABNT, 1989). Para a intensidade pluviométrica utilizou-se os dados da Estação Pluviométrica 2554006 da Rede Hidrometeorológica Nacional - Hidroweb, localizada em São Miguel do Iguaçu, Paraná, dos anos de 1980 até 2015. A distância dessa estação meteorológica em relação ao CMEI é de 1,7 km.

Os dados consistidos e preenchidos as falhas, de todos os meses, dos anos de 1980 à 2015 são de QUADROS, 2017. Para obter a intensidade pluviométrica, fez-se uma média mensal de Janeiro a Dezembro de 1980 à 2015, os resultados foram somados e divididos por 12, para chegar na média anual geral. Após, dividiu-se por 365 para encontrar a média diária e por fim por 24 para chegar à intensidade pluviométrica em mm/h.

Para o cálculo de área de contribuição utilizou-se a fórmula de área inclinada, prevista na NBR 10.844 (ABNT, 1989).

Dimensionamento das Calhas e Condutores

As calhas e condutores não serão dimensionados, pois o CMEI já possui sistema de calhas e condutores, conforme figura 2.

Figura 2 - Calhas e condutores existentes na CMEI

Desvio de Águas Primárias

Para dimensionar o tamanho do DESVIUFPE deve-se usar a metodologia proposta por ARAÚJO, 2017, que leva em conta a altura de precipitação sendo de 1 mm (1 litro/ m²). Para o cálculo da área do telhado, a inclinação foi desconsiderada.

$$Volume_{descarte} = \text{\'A}rea_{telhado} \cdot Altura_{precipitac\~ao}$$
 (1)

A área do telhado foi calculada a partir das medidas retiradas da planta do CMEI. Em seguida foi calculada a quantidade de tubos. Para o cálculo foi adotado um tubo de 1 metro e com diâmetro de 100 mm.

$$Quantidade_{tubos} = Volume_{descarte} \div Volume_{tubo\ descarte}$$
 (2)

Sabendo a quantidade de tubos, a instalação deve ser feita conforme o espaço disponível, utilizando canos de PVC, ligações do tipo tê's e luvas, e deve ser acoplada uma torneira ao final da tubulação para esvaziar os tubos a cada 48 horas de precipitação.

Dimensionamento do Reservatório

Levando em consideração, que o número de estudantes e funcionários do CMEI não se altera com frequência e nem significativamente, podemos considerar que o consumo é constante, para dimensionar o reservatório. Para tanto, foi utilizado o Método Prático Inglês, previsto na NBR 15.527 (ABNT, 1989).

Levantamento de Custo

Para determinar o custo do projeto (sem considerar o valor da instalação), foi feito o orçamento dos materiais em 3 estabelecimentos: Loja Trena Materiais de Construção, Loja Bassani Materiais de Construção e Loja Martinello e Cia LTDA, todas localizadas na cidade de São Miguel do Iguaçu.

RESULTADOS E DISCUSSÃO

Vazão do Projeto

As médias mensais da intensidade pluviométrica para o período de 1980 a 2015, estão expressas na Tabela 1.

Tabela 1- Médias mensais de 1980 a 2015

Janeiro	142,51 mm	Julho	96,76 mm
Fevereiro	139,36 mm	Agosto	130,40 mm
Março	122,55 mm	Setembro	133,95 mm
Abril	145,57 mm	Outubro	210,58 mm
Maio	166,17 mm	Novembro	158,80 mm
Junho	134,72 mm	Dezembro	153,87 mm

A Tabela 2 mostra a média anual, diária e a intensidade pluviométrica.

Tabela 2 - Média anual, diária e intensidade pluviométrica

Média anual	144,60 mm/ano	
Média Diária	0,396 mm/dia	
Intensidade Pluviométrica	0,0165 mm/hora	

Os valores da área de contribuição estão na Tabela 3:

Tabela 3: Área de contribuição

Área 1 (A1)	116,15 m²
Área 2 (A2)	33,755 m²
Área Total (A1+A2)	144,935 m²

Por fim, a vazão do projeto é de 0,041 L/min.

Calhas e Condutores

O CMEI já possui sistema de calhas e condutores, as medidas estão expressas na Figura 3.

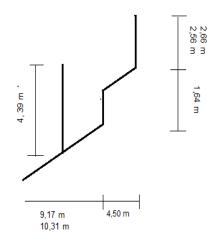


Figura 3: Medidas das calhas e condutores

Desvio de Águas Primárias

A área do telhado totalizou 121,9 m². Utilizando a equação 3, chegou-se a 121,9 L como sendo o volume de descarte. A quantidade de tubos conforme a equação 4 foi de aproximadamente 16 tubos.

Dimensionamento do Reservatório

O reservatório foi dimensionado com 1.047,89L. Levando em conta o espaço disponível para a implantação da cisterna, a quantidade de água que será armazenada, o custo, a facilidade de instalação e a disponibilidade do material, foi escolhida a cisterna de polietileno.

Levantamento de Custo

Os preços em R\$ dos materiais necessários para a implantação da cisterna de acordo com Loja Trena Materiais de Construção estão expressos na Tabela 4, Loja Bassani Materiais de Construção na Tabela 5 e Loja Martinello e Cia LTDA na Tabela 6.

Tabela 4 Orçamento Loja Trena Materiais de Construção

Quant.	Descrição	V. Unitário	V. Total
01	Caixa d'água 1.000L em fibra de vidro	R\$ 458,00	R\$ 458,00
16	Tubos de PVC, de 1 metro de comprimento e 100mm de diâmetro.	R\$ 14,11	R\$ 225,76
2	Torneiras simples.	R\$ 4,70	R\$ 9,40
10	Tê's de PVC.	R\$ 15,00	R\$ 150,00
Valor total		R\$ 84	13,1

Tabela 5- Orçamento Loja Bassani Materiais de Construção

Quant.	Descrição	V. Unitário	V. Total
01	Caixa d´água 1.000L em fibra de vidro	R\$ 390,00	R\$ 390,00
16	Tubos de PVC, de 1 metro de comprimento e 100mm de diâmetro.	R\$ 14,00	R\$ 224,00

2	Torneiras simples.	R\$ 5,00	R\$ 10,00	
10	Tê's de PVC.	R\$ 13,50	R\$ 135,00	
	Valor total		R\$ 759,00	

Tabela 6: Orçamento Loja Martinello e Cia LTDA

Quant.	Descrição	V. Unitário	V. Total
01	Caixa d´água 1.000L em fibra de vidro	R\$ 450,00	R\$ 450,00
16	Tubos de PVC, de 1 metro de comprimento e 100mm de diâmetro.	R\$ 14,37	R\$ 250,00
2	Torneiras simples.	R\$ 4,00	R\$ 8,00
10	Tê's de PVC.	R\$ 16,50	R\$ 165,00
Valor total		R\$ 8′	73,00

CONCLUSÃO

Levando em conta a pesquisa realizada, determinou-se que seria viável a instalação da cisterna no CMEI Jacira Bongiolo. Porém, por se tratar de um órgão público, o qual tem um recurso financeiro limitado e tendo em vista o contexto pandêmico o qual o mundo está vivendo, a implantação não pode ser realizada.

REFERÊNCIAS:

ARAÚJO, L, F,. "Desviufpe Como Barreira Sanitária Para Melhoria Da Qualidade De Água De Chuva Em Zona Rural: Determinação De Deposição Seca E Melhoria De Desempenho." 2017. 74 f. Dissertação (Mestrado) - Curso de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Caruaru, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10844: Instalações prediais de águas pluviais. Rio de Janeiro: Moderna, 1989.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15527: Água de chuva -Aproveitamento de coberturas em áreas urbanas para fins não potáveis -Requisitos. Rio de Janeiro: Moderna, 2007.

MARTINI, C. "Viabilidade da Implantação de Cisternas para a Captação de Água da Chuva em Propriedades Rurais do Município de Ita-SC." 2014. Monografia de Especialização (Especialista na Pós Graduação em Gestão Ambiental em Municípios) - Universidade Tecnológica Federal do Paraná – UTFPR – Câmpus Medianeira, [S. l.], 2013.

MOURA, M, R, F,; SILVA, S, R; BARROS, E, X, R. (2017) "Análise de Implantação De Um Sistema de Aproveitamento de Água Pluvial em um Empreendimento Residencial na Cidade De Recife-Pe. Tecnológica, Pernambuco" 2017 (22-1) pp. 66-72.

QUADROS, L, E. "A Ocorrência de Secas Meteorológicas no Estado Do Paraná: Utilizando Dados Históricos e Simulados." Tese (Doutorado em Engenharia Agrícola) - Unioeste, [S. l.], 2017.

SEEGER, L, M, K; SARI, V; PAIVA, E, M, C, D. (2007). "Análise Comparativa do Aproveitamento da Água da Chuva na Lavagem de Veículos em duas Cidades da Região Sul e Centro-Oeste." In Anais do XVII SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS. 20117, 17, pp. 1-16.