COMPARATIVO DOS TRANSIENTES HIDRÁULICOS EM TUBULAÇÃO DE AÇO E FERRO FUNDIDO, QUANDO À INTERRUPÇÃO ABRUPTA NO SISTEMA ELÉTRICO

Keila Giordany Sousa Santana 1; Abraão Martins do Nascimento2; Paulo Eduardo Silva Martins 3 & Nayara Bezerra Carvalho4.

RESUMO: A falta de análise no dimensionamento e escolha imprecisa do tipo de material para tubulação de adutoras torna o sistema de abastecimento de água suscetível ao golpe de aríete. O estudo comparativo de modelos mais precisos para observação do desempenho das tubulações durante fenômenos transitórios, onde podem ocorrer sobrepressões e subpressões que provocam sérios danos ao sistema, destina-se ao aperfeiçoamento no seu dimensionamento. Desta forma, esse estudo tem o intuito de analisar e comparar a eficiência de condutos de aço galvanizado e ferro fundido, com diferentes espessuras, submetidos ao golpe de aríete quando à interrupção do sistema elétrico, causando falhas no bombeamento do fluido e não abastecimento da comunidade. Foram utilizados os dados da Adutora da Barragem Jaime Umbelino de Souza, situada no rio Poxim-Açú, às margens da BR-235, na região metropolitana de Aracaju, no estado de Sergipe. Com os resultados obtidos através da análise dos transientes hidráulicos, foi identificado que a tubulação em aço carbono é mais eficaz em comparativo com a tubulação em ferro fundido, que geraria maiores danos ao sistema de adução de água.

Palavras-chave: Tubulação, aço carbono, ferro fundido.

INTRODUÇÃO

As canalizações principais, destinadas a conduzir água entre as unidades de um sistema público de abastecimento que antecedem a rede de distribuição, dá-se o nome de adutora, elas interligam a captação e tomada de água à estação de tratamento de água, e esta aos reservatórios de um mesmo sistema. Quando o transporte de água da adutora é feito no sentido ascendente, ou no sentido de pressões crescentes, há a necessidade de se fornecer ao líquido uma parcela de energia, o que se faz através dos sistemas de recalque. Nesses casos, bombas são necessárias para elevar a água de um ponto mais baixo ou simplesmente para aumentar a taxa de escoamento (AZEVEDO NETTO, 1998).

Quando o escoamento do líquido nas adutoras se dá ao longo de um conduto forçado, ocupando toda sua área geométrica, impossibilitando o contato com o ambiente externo e em regime variado, ocorre o fenômeno chamado de golpe de aríete. (AZEVEDO NETTO, 1998).

A NBR 12215/2007 diz que a análise do golpe de aríete deve ser realizada em duas etapas: diagnóstico e dimensionamento. No diagnóstico adota-se a adutora desprovida de dispositivos de

¹ Graduanda, Curso de Engenharia Civil, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, CEP: 49032-490, <u>keila-11@hotmail.com</u> (apresentadora do trabalho);

² Graduando, Curso de Engenharia Civil, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, CEP: 49032-490, abraaomartins@live.com;

³ Coorientador, Engenheiro Ambiental e Doutor em Ciência do Solo, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, CEP: 49032-490, paulo_xx_martins@hotmail.com;

⁴ Orientadora, Engenheira Ambiental e Doutora em Engenharia de Processos, Universidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, CEP: 49032-490, nayara.eng@hotmail.com.

proteção para as condições normais e excepcionais. Quando são atendidas as pressões máximas toleráveis da tubulação é desnecessário o dimensionamento do golpe de aríete e implementação de dispositivos de proteção. Na etapa do dimensionamento do golpe de aríete devem ser analisados os diversos dispositivos de proteção e controle, selecionando aqueles que garantam as condições extremas de pressão.

De modo consequente, com a finalidade da identificação da escolha do material de implantação e operação do sistema, foi realizada a análise e comparativo das pressões máximas e mínimas decorrentes do golpe de aríete em canalizações de diferentes tipos de materiais, com mesmo diâmetro, utilizando-se dos dados da Adutora do Poxim.

MATERIAL E MÉTODOS

A barragem Jaime Umbelino de Souza, situada no rio Poxim-Açú, em São Cristóvão, região metropolitana de Aracaju, é responsável por cerca de 30% do abastecimento de água da Grande Aracaju. A estrutura física da barragem possui uma extensão de 1.125 metros, com uma área de inundação de 5,2 km². A Adutora da Barragem, Figura 1, foi construída com conduto em aço carbono de 900 mm de diâmetro, tendo 210 m de tubulação de sucção, 14 km de tubulação de recalque, composta por um conjunto motobomba a montante, um reservatório a jusante, oito travessias, dezenove ventosas, dezenove pontos de descarga, três tanques de alimentação unidirecional (TAU) e estação elevatória com capacidade de 900 litros por segundo (I/s) de vazão.

A Estação de Tratamento de Água Bruta é abrigada por uma edificação coberta que abrange uma área construída de 283 m², composta por quatro motobombas em paralelos, sendo que três operam simultaneamente e uma é usada de reserva para período de estiagem e, em épocas de chuva, as quatro atuam para uma maior vazão, sendo a vazão média de 960 l/s e máxima de 1200 l/s (DESO, 2018).

Figura 1: Trecho da Adutora do Poxim-Acu ligando a barragem Jaime Umbelino de Souza (do rio Poxim) à estação de tratamento (ETA) doPoxim, localizada próximo ao campus da UFS (Universidade Federeal de Sergipe), no município de São Cristóvão, no estado de Sergipe. Fonte: ASN (2017).

O perfil da adutora, representado por número de trechos, comprimento (m), diâmetro (m) e cotas de montante e jusante (m), foi o caso de análise do golpe para os dois tipos de materiais das tubulações (Aço e ferro fundido).

Para a realização dos cálculos de sobrepressão são utilizados dois parâmetros prévios, o período ou fase de canalização (expressão 1) e celeridade (expressão 2) (HOUGHTALEN, 2012). $T = \frac{2L}{c} \quad (s) \quad (1)$

$$T = \frac{2L}{c}$$
 (s) (1)

Onde: T é o período ou fase de canalização, L é o comprimento da tubulação e C é a celeridade. $C = \frac{9900}{\sqrt{48,3 + k \frac{D_i}{a}}}$ (m/s) (2)

Onde: C é a celeridade, k é o coeficiente de elasticidade, D_i é o diâmetro interno do tubo e e é a espessura da parede do tubo.

A depender do tipo de manobra é utilizada diferentes expressões, para as manobras rápidas (t < T), sendo t o tempo de fechamento da válvula, e para as manobras lentas (t > T) (HOUGHTALEN, 2012).

$$h_a = \frac{cv}{a}$$
 (mca) (3)

Nesta análise, foi utilizada a Fórmula de Allievi para manobras rápidas (expressão 3). $h_a = \frac{cv}{g} \pmod{3}$ Onde: h_a é a sobrepressão, C é a celeridade, v é a velocidade média de escoamento e g é a gravidade.

RESULTADOS E DISCUSSÃO

Como sugerido nesse estudo, foram realizadas as comparações das pressões máximas e mínimas para as tubulações em aço carbono e em ferro fundido, vinculadas aos dados técnicos da adutora de análise.

Dessa maneira, com as expressões apresentadas na seção Materiais e Métodos, foram calculadas as sobrepressões e subpressões para as tubulações de recalque, representadas por estaqueamentos conforme dados da Adutora estudada. Nas Tabelas 1 e 2 são mostradas os resultados dos cálculos realizados, considerando a falta de energia elétrica, provocando a interrupção no funcionamento da bomba de recalque, no tempo de manobra de 1s.

Tabela 1: Sobrepresões e subpressões em cada trecho da adutora considerando a vazão máxima

-		T			
	Pressão Estática (mca)	Aço ø900 mm e esp.6,35 mm		Ferro Fundido ø900 mm e esp. 11,90 mm	
Nó					
		Sobrepressão	Subpressão	Sobrepressão	Subpressão
E373+10	77,59	257,12	-101,94	283,29	-128,11
E384+9	78,90	258,43	-100,63	284,60	-126,80
E388	76,86	256,39	-102,67	282,56	-128,84
E392	78,84	258,37	-100,69	284,54	-126,86
E404	73,22	252,75	-106,31	278,92	-132,48
E410+12	76,60	256,13	-102,93	282,30	-129,10
E429+18	46,70	226,23	-132,83	252,40	-159,00
E437	75,00	254,53	-104,53	280,70	-130,70
E447	78,70	258,23	-100,83	284,40	-127,00
E459	75,92	255,45	-103,61	281,62	-129,78
E461+12	76,70	256,23	-102,83	282,40	-129,00
E466+9	75,60	255,13	-103,93	281,30	-130,10
476+10	75,40	254,93	-104,13	281,10	-130,30
E485+8	80,20	259,73	-99,33	285,90	-125,50
E495+8	79,00	258,53	-100,53	284,70	-126,70
E500+10	80,68	260,21	-98,85	286,38	-125,02
E506+2	79,85	259,38	-99,68	285,55	-125,85
E510	82,72	262,25	-96,81	288,42	-122,98
E515	77,15	256,68	-102,38	282,85	-128,55
E530	81,21	260,74	-98,32	286,91	-124,49
E544	76,24	255,77	-103,29	281,94	-129,46
E565	81,41	260,94	-98,12	287,11	-124,29
E571	78,79	258,32	-100,74	284,49	-126,91
E579+10	80,60	260,13	-98,93	286,30	-125,10
E585	78,56	258,09	-100,97	284,26	-127,14

E600	83,43	262,96	-96,10	289,13	-122,27
E606	81,95	261,48	-97,58	287,65	-123,75
E619+12	80,10	259,63	-99,43	285,80	-125,60
E647	80,13	259,66	-99,40	285,83	-125,57
E662	81,31	260,84	-98,22	287,01	-124,39
E674	78,21	257,74	-101,32	283,91	-127,49
E677	79,81	259,34	-99,72	285,51	-125,89
E680	78,81	258,34	-100,72	284,51	-126,89
E682	80,09	259,62	-99,44	285,79	-125,61
E685	77,06	256,59	-102,47	282,76	-128,64
E690+15	53,50	233,03	-126,03	259,20	-152,20
E692+10	50,50	230,03	-129,03	256,20	-155,20
E693	49,90	229,43	-129,63	255,60	-155,80
 E674 E677 E680 E682 E685 E690+15 E692+10	78,21 79,81 78,81 80,09 77,06 53,50 50,50	257,74 259,34 258,34 259,62 256,59 233,03 230,03	-101,32 -99,72 -100,72 -99,44 -102,47 -126,03 -129,03	283,91 285,51 284,51 285,79 282,76 259,20 256,20	-127,49 -125,89 -126,89 -125,61 -128,64 -152,20 -155,20

Tabela 2: Continuação do Tabela 1: Sobrepresões e subpressões em cada trecho da considerando a vazão máxima.

	T	1		1	
Nó	Pressão Estática	Aço ø900 mm e esp.6,35 mm		Ferro Fundido ø900 mm e esp. 11,90 mm	
	(mca)	Sobrepressão	Subpressão	Sobrepressão	Subpressão
E373+10	77,59	257,12	-101,94	283,29	-128,11
E384+9	78,90	258,43	-100,63	284,60	-126,80
E388	76,86	256,39	-102,67	282,56	-128,84
E392	78,84	258,37	-100,69	284,54	-126,86
E404	73,22	252,75	-106,31	278,92	-132,48
E410+12	76,60	256,13	-102,93	282,30	-129,10
E429+18	46,70	226,23	-132,83	252,40	-159,00
E437	75,00	254,53	-104,53	280,70	-130,70
E447	78,70	258,23	-100,83	284,40	-127,00
E459	75,92	255,45	-103,61	281,62	-129,78
E461+12	76,70	256,23	-102,83	282,40	-129,00
E466+9	75,60	255,13	-103,93	281,30	-130,10
476+10	75,40	254,93	-104,13	281,10	-130,30
E485+8	80,20	259,73	-99,33	285,90	-125,50
E495+8	79,00	258,53	-100,53	284,70	-126,70
E500+10	80,68	260,21	-98,85	286,38	-125,02
E506+2	79,85	259,38	-99,68	285,55	-125,85
E510	82,72	262,25	-96,81	288,42	-122,98
E515	77,15	256,68	-102,38	282,85	-128,55
E530	81,21	260,74	-98,32	286,91	-124,49
E544	76,24	255,77	-103,29	281,94	-129,46
E565	81,41	260,94	-98,12	287,11	-124,29
E571	78,79	258,32	-100,74	284,49	-126,91
E579+10	80,60	260,13	-98,93	286,30	-125,10
E585	78,56	258,09	-100,97	284,26	-127,14
E600	83,43	262,96	-96,10	289,13	-122,27
E606	81,95	261,48	-97,58	287,65	-123,75
E619+12	80,10	259,63	-99,43	285,80	-125,60
E647	80,13	259,66	-99,40	285,83	-125,57
E662	81,31	260,84	-98,22	287,01	-124,39
E674	78,21	257,74	-101,32	283,91	-127,49

E677	79,81	259,34	-99,72	285,51	-125,89
E680	78,81	258,34	-100,72	284,51	-126,89
E682	80,09	259,62	-99,44	285,79	-125,61
E685	77,06	256,59	-102,47	282,76	-128,64
E690+15	53,50	233,03	-126,03	259,20	-152,20
E692+10	50,50	230,03	-129,03	256,20	-155,20
E693	49,90	229,43	-129,63	255,60	-155,80

Os resultados obtidos demonstram o aumento significativo das envoltórias de pressões, causadas no sistema da adutora, devido a interrupção do sistema elétrico e interrupção do funcionamento do conjunto motobomba. Ocorre um aumento maior que duas vezes a pressão estática. É de suma importância a análise e escolha correta do material que será utilizado, a fim de evitar danos na tubulação, desabastecimento de uma população, além de outros transtornos mais graves envolvendo a vida humana.

CONCLUSÕES

- 1. Foi verificado o aumento de sobrepressão e diminuição da subpressão, em altos níveis ao longo da adutora para os dois materiais comparados (aço galvanizado e ferro fundido).
- 2. Os valores são superiores a mais que o dobro das pressões estáticas para os dois materiais comparados (aço galvanizado e ferro fundido).
- 3. Com tais resultados é inevitável a ocorrência do golpe de aríete ocasionando o colapso em algum trecho da adutora;
- 4. É possível concluir que a escolha da tubulação em aço galvanizado foi a melhor opção, visto que a tubulação em ferro fundido geraria maiores valores dos transientes hidráulicos e consequentemente maiores danos ao sistema de adução de água.

AGRADECIMENTOS

Agradecimentos à Universidade Tiradentes, pelo incentivo à pesquisa através do Programa Voluntário de Iniciação Científica da Unit (PROVIC/Unit) e Programa de Bolsas de Iniciação Científica da Unit (PROBIC/Unit). E à colaboração da DESO, com a disponibilidade de relatórios técnicos, memoriais descritivos e apoio para realização do trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

ASN. Disponível em: http://www.agencia.se.gov.br/noticias/governo/grande-aracaju-recebe-investimentos-de-r-115-milhoes-em-abastecimento-de-agua. Acessado em: 08 de abril de 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12215: Projeto de adutora de água para abastecimento público: Referências. Rio de Janeiro. 1991.

AZEVEDO NETTO, J. M. de. Manual de Hidráulica. 8ª edição - São Paulo: Blucher, 1998; DESO. Sistema de Recalque e Adução de Água Bruta do Poxim Açu. Vol.I – Memorial Descritivo e Justificativo. Aracaju, 2018;

HOUGHTALEN, R. J. Engenharia hidráulica. 4. ed. São Paulo, SP: Pearson Education do Brasil, 2012.

PORTO, Rodrigo de Melo. Hidráulica Básica. 4ª Edição. EESC USP, 2006.